Discussion 5

10 Oct 23



Announcements

Midterm on Friday, please contact Prof Pawel/TAs for special assistance



Population vs Sample

Population Eonaiiion
- The universe of possible data for a specified ccoeccecves &
object, such as people, places, objects, etc. ' ' AbdRdiA ' '
- Not observable.
- Example: People (or IP addresses) who have l
visited or will visit a website.
Sample Sompte
- Asubset of the population that is observable. i ‘i i
- Example: People who visited the website on a
specific day.



The Challenge: Inference from Sample to
Population

- Making inferences about the population based on sample data is a common challenge
in statistics and parameter estimation.

- Example: Election Polling
- Imagine you want to predict the outcome of a national election (population) based on

a survey of 1,000 registered voters (sample).
- The challenge is to use the survey results to draw accurate conclusions about the

entire voting population.



Introduction to parameter estimation

- Used to make inferences about unknown population parameters based on sample

data
- Involves the estimation of values such as population means, variances, proportions,

or other key characteristics that describe a population.



.1.d

- Independent: Data points are independent if the occurrence or value of one data
point does not affect the occurrence or value of another. In other words, they are
unrelated.

- ldentically Distributed: Data points are identically distributed if they all follow the
same probability distribution with the same parameters.

- Example: flipping a coin multiple times



Point estimation

- Aims to find a single value that represents the most likely value of the parameter.

- @ (point estimate) represents the estimated value of the population parameter 6.

- Example: Suppose you want to estimate the mean income (p) of all households in a
city. You collect a random sample of 200 households and calculate the sample mean
income (X) to be $55,000. In this case, $55,000 is your point estimate for the mean
income of all households in the city (p).

- Point estimate varies from sample to sample.



Bias and variance

Bias measures the difference between the expected value of the estimator and the true

value of the parameter.
Variance measures how much the estimator can vary as a function of the data sample.

Bias-Variance Trade-Off:
- Methods with lower bias tend to have higher variance and vice versa.
- ldeally, low variance and low bias is preferred




Steps to find MLE

Find the likelihood function (joint probability)
Find the log-likelihood function

Find the derivative of log-likelihood function
Put it equal to O and solve

SO



Likelihood function

Mathematically, it is represented as L(8) = f(x|8), where:
- L(0): Likelihood function.
- f(x|8): Probability density function (PDF) or probability mass function (PMF) of the
data, given 6.

L(O) is typically calculated as the product (for independent observations) or joint
distribution (for dependent observations) of the data points, given ©.

It is simply the joint probability. m .
Prodel (X; 6) = H DPinoaei (P 5 6).

i=1




Property Logarithm base b Natural Log (base e) Examples
10%3(10) = log; (5 '2)
log, (x) =log, x+1log, ¥ In(xy)=Inx+Iny = log, 5 +log; 2

1. Product Property

2. Quotient Property

log, [}1} =log, x-log, ¥

ln[f]ﬂnx—lny
v

v

10&(%) =log,5-log,7

3. Powers Property log, x* = plog, x Inx? = plnx In27 =1n3* =3In3
1 1 1
log, {x = —log, x In{x=—Inx aferoae )
4. Root Property og, x p %8s U P 1082\/; 31082}
5. Inverse Property log, b* = x or b™* = x he=xore™=x log;3* =4
6. Identity Property log, b=1 Ine=1 log ; Va=1
7. Zero Property log,1=0 In1=0 log,1=0
8. Change of base log log , ;
. log, x = %, Inx=—ce log56=10i6
Property log, b log, e log5
log; x =log, 6
9.Equality Property |Iflog, x=1log, vthenx=y |[Iflnx=Inythenx=y x=6
log, ~=—log, x ml-_ nl=_ins
10. Reciprocal Property 08, ~ =108, i ng=-n




MLE Example

Say we have a random variable X that tells you the number of chocolates a person gets on their birthday.
We have a sample of say 50 students. So our random variables are:
X; = number of chocolates

and we have:
X],X2, P .X50

ZXi =150

Let's just assume that

This is to just keep things simple.
To find the mean of the number of chocolates owned by a person:

We have the parameter A for a Poisson distribution.




For Poisson distribution:




For Poisson distribution:

So, our likelihood function becomes:




For Poisson distribution:

So, our likelihood function becomes:




Taking the log likelihood,

—/1 /1X

IA1X1,X2,...X5) = log(H

50
E Z[—/l + x;logA — log(x;!)]

i=1
Now we drop the last term since it doesn't have lambda and it's a constant.
So here, we only have to worry about the first two terms.
For the first time, we are just adding lambda 50 times. And the second term is a factorial.
50
= —-504 + Z xilogA
i=1

This is the log-likelihood.




Find the derivative of the log-likelihood with respect to A:
d 0,
—IAX1,X5,... X50) =50+ ) =
I AX1,X> 50) ; pl

Set the derivative equal to 0 to find the MLE for A:

50
0=-50+) %
=1




Now, isolate A:

To solve for 4, you can rearrange the equation:

. 1 50
=%§xl~
. 1 50
l=5—OZXl

Substituting the given value ¥ X; = 150:
~ 1
A=—(150)=3
50( )

So, the Maximum Likelihood Estimate (MLE) for A is /1A= 3. This means that the estimated average number of chocolates owned by a person is
3, based on your sample data of 50 students.




