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Homework 4 DS 122, Foundations of Data Science III

1 Q1 Problem A

1.1 Q1.1 Part 1
Differentiate the expression y(z) = log(z?) + log(4z) — log(3z + 2)

1.2 Answer
Given:

y(z) = log(z?) + log(4z) — log(3z + 2)
For log(z?)

Let u = 3. Then:

v = 3z
The derivative of log(z?) is:
302 _3
3z
For log(4x)
Let u" = 4z. Then:
u =4
Thus, the derivative of log(4x) is:
41
4r =z
For log(3z + 2)
Let u = 3z + 2. Then:
u' =3
Thus, the derivative of log(3z + 2) is:
3
3x +2

Combining the results:

The overall derivative, y’ (), is the sum of the derivatives of each item:

3 1 3

V=t s
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1.3 Q1.2 Part 2

Given the functions u(z) = e” and v(z) = log(x + 1), determine the derivative of y(z) = u(z)v(z)

1.4 Answer

To find the derivative of y(z) = u(z)v(z), we'll need to make use of the product rule for differentiation.

The product rule states:

Ify(z) = u(z)v(z)

Given:

Differentiating u(x):

d
/ — T — %
u'(z) = e =e
Differentiating v(x):
Using the chain rule:
d /
v'(z) = ——log(u) = —
dz
Let w = z + 1. Then:
u =1
Thus, the derivative of log(z + 1) is:
1
/ —
v (z) = 1

Applying the Product Rule
y'(z) = v (2)v(z) + u(x)v'(z)

1

() =e*log(z + 1)+ €%
(&) = ¢ loga +1) + ¢ —

1.5 Q1.3 Part 3
Using the logarithmic properties to simplify, find the derivative of y(x) = log (3;4 (z+ 1)3)
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1.6 Answer

Given: y(z) = 10g($4 (z+ 1)3)

Using the Properties of Logarithms:

Using the logarithmic property log(a - b) = log(a) + log(b)

y(x) = log(z*) + log((x + 1)3)

Using the property log(a”) = b - log(a):
y(z) = 4log(z) + 3log(z + 1)

Differentiating the Expression:

Differentiating 4 log(z)

Differentiating 3 log(z + 1):

Using the chain rule:

Combining the Results:

The overall derivative, y’ (), is the sum of the derivatives of each term:

1.7 Q1.4 Part 4

For the function y(z) = z? log(z> + 1), apply the chain rule and logarithmic differentitation to deter-
dy

mine % .
1.8 Answer

Given the function:

y(z) = 2% log(z3 + 1)
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We can use both the product rule and the chain rule combined with logarithmic differentiation

Let’s call:

u(z) = z2

v(z) = log(z® + 1)

Using the product rule:

Differentiating u(x):

u(r) = —x° =2z

dx

Differentiating v(x):

v (z) = x31+ * —w(xg’ +1)
v(z) = — ! * 312
o +1
372
vie) = z3+1
Applying the product rule:
dy 32

T 2z log(z + 1) + z2

3 +1

1.9 Q1.5 Part 5

If y(z) = z”, take the natural logarithm of both sides and then differentiate implicitly to directly deter-

. dy
mine dc’

1.10 Answer

Given y(z) = z”
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Taking the Natural Logarithm of Both Sides

Using the property of logarithms ln(ab) = bln(a):
In(y) = zIn(x)

Differentiating the left side with respect to x using the chain rule:

1 dy
_*_

y dzx
Differentiating the right side:

The term x In(x) is a product of two functions, so we use the product rule.

Let u(z) and v(z) = In(z)

u'(z)=1
1
v (z) =—
x
Using the product rule:
d
d—[m In(z)] =2+ —+1In(z)*1 =1+ In(x)
x
Equating both derivatives:
1 d
O + In(x)
y dx

Solving for %

W Y1+ )

We know from the original equation that y = x*. Plugging this in:

Z—i =2%(1 + In(x))

2 Q2 Problem B

Consider the histograms below which depict the sampling distributions of four different estimators for a

population parameter. The true population parameter value is 7.

Based on the histograms:
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2.1 Q2.1

Find the estimators with the lowest bias.

+ Both 1 and 2 have lowest bias

« Choice 2 of 4: Both 1 and 3 have lowest bias
« Choice 3 of 4: Only 3 has lowest bias

« Choice 4 of 4: Both 2 and 4 have lowest bias

2.2 Q2.2

Find the estimator(s) with the highest variance.

«+ Choice 1 of 4: Both 1 and 4 have highest variance
« Choice 2 of 4: Both 2 and 4 have highest variance
+ Choice 3 of 4: Only 1 has highest variance
+ Choice 4 of 4: Only 2 has highest variance

2.3 Q2.3

Considering the fact that Mean Squared Error (MSE) is a combination of variance and squared bias, which

estimator(s) likely has the highest MSE?

« Choice 1 of 4: Estimator 1
« Choice 2 of 4: Estimator 2
« Choice 3 of 4: Estimator 1 and 2
« Choice 4 of 4: Estimator 4

3 Q3 Problem C

Suppose {y(l), y?, . y(”)} is an i.i.d. sample from the continuous uniform distribution with parameters

0 and 6.

Let § = % * (yV,y@, .., y™)be an estimator of §

Hint: You can use the following facts about the continuous uniform distribution with parameters a and b:

a+b
2
(b—a)®
12

« its means is equal to

» its variance is equal to

3.1 Q3.1 Part 1

Determine the bias of 6.
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3.2 Answer
Given:
{y(l), y?, ., y(”)} is an i.i.d. sample from the continuous uniform distribution with parameters 0 and 6.

Estimator:

)
Il
S

(0
;y

We want to determine the bias of 6.

Determine E (5)
Given y?) is from a uniform distribution with parameters 0 and 6, the mean (y(i)) is:
. 0+60 6
E(y®) = —2 ==
W) =573

Now, the expected value of the sum of the y((7)) values is:

E(iy((z))) =nE(y?) =nx* g _ %9
i=1

Given the estimator:

The expected value E(é) is:

Compute the Bias
Now that we have E(é) =0

Bias(0) = E(0) —0=0—0=0

Therefore, the estimator 0 is unbiased for 6.

3.3 Q3.2 Part 2

Determine the mean of 6.
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3.4 Answer
To determine the mean of 6, we need to find its expected value, E(é)

Recall from the previous part, the estimator is:

0 =

>0

SN

Given that %) is from a uniform distribution with parameters 0 and 6, the mean E(y¥ is:

. 0 0
E(y") = 572) =3

Now, the expected value of the sum of the y(i) values is:

L . 0 n-0
BB () = n- & = 20
i=1
Given the estimator:
~ 2
(i=1}
The expected value E( is:
BH) =2 (3 4
T n — y
~ 2 nb

Thus, the mean of B is 6.

3.5 Q3.3 Part 3

~

Determine the variance of 6.

3.6 Answer

To determine the variance of 6, we will start by calculating the variance of a single observation y¥) and

then extend it to be the variance of the estimator.

Given:

y are i.i.d samples from the continuous uniform distribution with parameters0and 6

The variance Var(y(i)) is:

. 0—0)> 62
Va.l"(y<l)> — ( 12 ) — E

10
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Since the observations are independent, the variance of the sum is the sum of the variances:

Var (Z y((i») —n. &1

Now, let’s consider the estimator:

3

y((2))

i=1

D)
|
S

Using the properties of variance:
Var(cX) = ¢? Var(X)
where c is a constant.

The variance Var(@) is:

2

Var(6) = 5 - )
o 462
Var(e) = o
Var(@) = g—;

92

Thus, the varaince of 0 is 3

4 Q4 Problem D

Suppose y is a discrete random variable with the following probability mass function (pmf):

y 0 1 2 3

pv6) | 26 | 16| 20—-9) | La-0)

Where 0 < 6 < 11is a parameter. Given the following 10 independent observations from this distribution:

Y ={1,1,0,2,2,1,3,2,0,3}

11
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4.1 Q4.1
Compute the likelihood function p(Y’; ).

4.2 Answer

We can multiply together the probabilities assigned by the pmf to each observed va;ie. according to the
principle of likelihood.

Given observations Y = {1,1,0,2,2,1,3,2,0, 3}, let’s define: ny, ny, ny, ng as the number of times 0, 1,
2, 3 appear in Y respectively.

The likelihood function, L(6;Y), is computed as:
L(6;Y) = p(Y;0) = p(y1;0)p(y2; 0)---p(y10; 0)
Since the observations are independent, we multiply the probabilities. Given the provided pmf:
p(y; 0) =

We can compute the likelihood function as:
2 \™ /1 \™ /2 "2 1 "3
L6;Y)=|-=0 -0 -0(1 -6 -0(1 -6
em=(30) (z¢) (5ea-0) (500-9)

ny = number of 0s in Y

Where:

n,; = number of Isin Y
ny = number of 2s in Y
n3 = number of 3s in Y

Given the observations Y = {1,1,0,2,2,1,3,2,0, 3}, we can substitute:

ng = 2
n, =3
Ng =3
ng =2

Now, substituting these counts into the likelihood function we can get:

L(6;Y) = (ga) 2 (%9) 3 (29(1 - 9)) ’ (%9(1 - 9)) ’

12
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4.3 Q4.2

Compute the log-likelihood function.

4.4 Answer

The log-likelihood function is the natural logarithm of the likelihood function. Given our likelihood func-

tion from Q4.1:
L(6;Y) = (ga) 2 (%9) 3 (29(1 - 9)) ’ (%9(1 - 9)) ’

We can take the natural logarithm of both sides:
1(6;Y) = In[L(6; V)]

Applying the properties of logarithms:

1(6:Y) = 21n(§9) +31n<%9> +31n(§(1 —9)) _ 2111(%(1 —9>>

Break it down further:

16, Y) = 2[111(;) + 1n(9)] + 3[111(%) + ln(G)] + 3[111(;) +1In(1 — 9)} + 2[111(%) +1In(1— 9)]

1(6;Y) = 21n(§) +21n(0)+31n(%) +31n(0)—|—3ln(§) +31n(1—9)—|—21n(%) +2In(1 —6)

4.5 Q4.3
Find the potential Maximum Likelihood Estimator (MLE) for 6.

4.6 Answer

We will need to maximize the log-likelihood function iwth respect to € to find the Maximum Likelihood
Estimator (MLE) for 6.

From Q4.2, our log-likelihood function is:
2 1 2 1
1(6;Y) = 2111(5) +21n(0) + 3ln(§> +31In(6) + 3ln(§> +3In(l —6) + 21n(§) +2In(1—6)

To find the MLE, we will differentiate {(0; Y") with respect to 6 and set the result eqaul to zero:

di(6;Y)
do

=0

Differentiating:

13
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1. Derivative of In(0) is é

2. Derivative of In(1 — 6) is —ﬁ
’t include 6 will have derivatives of zero

ae;y) 2 3 3 2

3. Constants and terms that don

dao 9+9 1-66 1-90

Setting all this to zero:

So, the Maximum Likelihood Estimator (MLE) for 6 is 6 = 0.5.

4.7 Q4.4

Explain in words how to confirm that the computed point for part c is indeed a maximum. Note: no com-

putations are required for this part.

4.8 Answer

1. Second Derivative Test
» By computing the second derivative of the log-likelihood function with respect to 6 and evaluating
it at the computed point, we can determine the nature of the point:
« If the second derivative is negative, it indicates that the function is concave down at that point,
which means our computed point is a local maximum.
« If the second derivative is positive, it indicates that the function is concave up, which would mean
our computed point is a local minimum.

« If the second derivative is zero, the test is inconclusive.

2. Log-Likelihood Surface
. If we were to plot the log-likelihood function, the computed point would be a peak on this surface
if it is a maximum.
« We cam look for the highest point in this plot.

3. Sign Change of First Derivative
« If the first derivative changes sign (from positive to negative) as 0 crosses the computed value, this
indicates that the function increases up to our point and then decreases after, suggesting it’s a max-

imum.

14



Homework 4 DS 122, Foundations of Data Science III

5 Q5 Problem E

In a clinical trial for a new drug, 30 patients were treated. Out of them, 24 patients showed improvement

in their conditions.

Assuming the patients’ responses follow a binomial distribution, find the Maximum Likelihood Estimator
(MLE) for the probability § = p that a randomly chosen patient shows improvement after being treated
with the drug.

Hint: The likelihood function for binomial distribution is given by:
n n—x
p(e:0) = (")or(1-0)
x

where:

« n is the number of trials
« z is the number of successes

+ 0 is the parameter, that represents the probability of success on a single trial.

5.1 Answer

The goal here is to find the value of 8 (the probability of a patient showing improvement) that maximizes
the likelihood of observing the given data, which follows a binomial distribution.

Given:
» n = 30 (total number of patients)

+ & = 24 (number of patients who showed improvement)

The likelihood function for the binomial distribution is:

n

L(o) = pla;0) = ()1 —0)"

x
The Maximum Likelihood Estimator (MLE) of 6 is the value of 6 that maximizes this likelihood function.

To find the MLE, we’ll differentiate the log likelihood with respect to § and set it to zero. This is because
the log function is a strictly increasing function, so where the log likelihood achieves its maximum, the

likelihood also achieves its maximum.

Taking the natural logarithm of both sides:

15
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n

in(2(6) =t ( (") (1 - 0)")

X

In(L(8)) = m((”

x)) +210(6) + (n— ) In(1 — 6)

Now, differentiate with respect to 6:

To find the MLE, set the derivative to zero and solve for 6:

T n—=o

06 1-—-6

Multiplying through by §(1 — €) and rearranging:
z(1—0)=(n—2x)0

z—x0 = nb — z0

T =nb
Thus, the MLE for 6 is:
§="2
n
Given x = 24 and n = 30:
~ 24 4
f=—=-=0.28
30 5

Therefore, the Maximum Likelihood Estimator (MLE) for the probability 8 that a randomly chosen patient
shows improvement after being treated with the drug is 0.8 or 80%.

6 Q6 Computational
See the Jupyter Notebook for details.

16
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