
MA214                       Lab Session 6: Regression II 

Boston University 

Department of Mathematics and Statistics 

 

MA 214 

Applied Statistics 

Lab Session 6: Regression II 

 

In this lab we will use the JMP software to further explore linear regression and gain 

more practice in transforming data, fitting a least squares regression line to 

transformed data and making correct interpretations about the fitted results.  

 

 

Preparation 

 

Once again we will be using the JMP data set called Televisions.jmp which is 

available on the Blackboard site under the Course Documents link. Recall that in this 

file, for each of the forty largest countries in the world (according to 1990 population 

figures), data are given for the country's life expectancy at birth, number of people per 

television set, and number of people per physician. SOURCE: The World Almanac 

and Book of Facts 1993 (1993), New York: Pharos Books. 

 

Variable Descriptions: 

Columns 

 1       Country 

 2       Life expectancy 

 3       People per television 

 4       People per physician 

 5       Female life expectancy 

 6       Male life expectancy  

 

Missing values are denoted with *. 

 

 

 

Questions 

 

1) Let us continue exploring the relationship between the life expectancy of a country 

and the number of people per television set by fitting a number of models to these 

two variables.  
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(a) First construct a scatterplot for the life expectancy of a country versus its 

number of people per television set in the usual way, by going to the 

“Analyze” -> “Fit Y by X” command, placing “LifeExp” in the “Y” role, 

adding “People/Television” to the “X, Factor” role, and finally pressing the 

“OK” button. Based on this scatterplot and the criteria discussed in class 

for determining the presence of extreme covariate values (in our case, 

People/Television), would you remove any data points before continuing 

with the regression analysis? If so, then go to the JMP data table and 

exclude those points, and then record those points below with an 

explanation for why you chose to remove them. 

 

From the scatterplot, we can observe a few points that could be 

considered as outliers or extreme covariate values. These are the points 

with a high number of people per television set (greater than 300). These 

points are significantly different from the rest of the data and could 

potentially skew the regression analysis. 

 

The points that could be considered for removal are: 

 

Bangladesh: LifeExp = 53.5, People/Television = 315 

Ethiopia: LifeExp = 51.5, People/Television = 503 

Myanmar (Burma): LifeExp = 54.5, People/Television = 592 

 

These points are chosen for removal because they have a significantly 

higher number of people per television set compared to other countries, 

which makes them extreme values in the context of this dataset. 

Removing these points could help in obtaining a more accurate regression 

model that better represents the general trend in the data. 

 

 

(b) Next, using your potentially revised data set, fit a linear regression model 

to predict the life expectancy of a country using its number of people per 

television set in a slightly different way than usual, by going to the 

“Analyze” -> “Fit Model” command, placing “LifeExp” in the “Y” role, adding 

“People/Television” to the “Construct Model Effects” box, changing the 

“Emphasis” to “Minimal Report”, and finally pressing the “Run” button. 

 

(i) From the red triangle at the top of the JMP output for the “Fit 

Model” procedure, go to “Row Diagnostics” twice in order to select 

both “Plot Residuals by Predicted” and “Plot Residuals by Row”.  

 

(ii) Based on the plot of the residuals by the predicted values and the 

criteria discussed in class, do you think that there is evidence to 

suggest a nonlinear relationship between life expectancy and 
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people per television? Please explain your answer. 

 

So we have two plots, in which the first plot shows residuals by 

predicted values, and the second plot shows residuals by row. 

 

From the plot of residuals by predicted values, we can see that the 

residuals are not randomly scattered around the horizontal axis 

(residual = 0), and there seems to be a pattern or trend in the 

residuals. This suggests that the relationship between life 

expectancy and people per television might not be linear. 

 

In a good linear regression model, we would expect the residuals 

to be randomly scattered around the horizontal axis with no 

obvious pattern or trend. This is because the residuals represent 

the error between the observed and predicted values, and in a 

good model, this error should be random and not systematic. 

 

Therefore, based on the plot of residuals by predicted values, 

there is evidence to suggest a nonlinear relationship between life 

expectancy and people per television. 

 

 

 

(iii) Based on the plot of the residuals by row (order of data collection) 

and the criteria discussed in class, do you think that there is 

evidence to suggest that the data points are not independent of 

one another? Please explain your answer. 

 

Essentially, in a good regression model, we would expect the 

residuals to be randomly scattered around the horizontal axis 

(residual = 0) with no obvious pattern or trend. This is because the 

residuals represent the error between the observed and predicted 

values, and in a good model, this error should be random and not 

systematic. 

 

In the plot of residuals by row for this data, we do not see any clear 

patterns or trends. The residuals seem to be randomly scattered 

around the horizontal axis. This suggests that the data points are 

likely independent of one another. 
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(iv) To verify the normality assumption, from the red triangle next to the 

response, choose save column > residual. The residuals will be 

saved in a new column of the data frame. From the Analyze menu, 

choose distribution platform, and select residual column as the Y 

variable.  To get the normal quantile plot, use the red triangle next 

to the Residual and choose Normal Quantile Plot.  Does the plot 

suggest that the normality assumption is satisfied?  Please 

explain your answer. 

 

In this case, the points in the Q-Q plot do not perfectly follow the 

straight line, especially at the tails. However, they are not too far 

off, and the deviations could be due to random chance. Therefore, 

based on this plot, we could say that the normality assumption is 

approximately satisfied. 

 

 

 

2) Now let us explore the effect of transforming the life expectancy data, the people 

per television set data, or both, on the fit of a linear model.  

 

(a) Based on the guidelines we’ve discussed in class about transforming data, 

let’s use the “Fit Model” command to try a variety of different 

transformations and look for the best one. As before, go to “Analyze” -> 

“Fit Model”, place “LifeExp” in the “Y” Role, add “People/Television” to the 

“Construct Model Effects” box, and change the “Emphasis” to “Minimal 

Report”. Now, after highlighting “People/Television” inside the “Construct 

Model Effects” box, or “LifeExp” in the “Y” Role, or both, go to the red 

triangle near the bottom of the “Fit Model” window next to the word 

“Transform” and apply the appropriate transformation to the data in order 

to fill in the table below. Remember to further use the “Plot Residual by 

Predicted” and “Plot Residual by Row” commands to check the adequacy 

of each model. You may enter your own ideas for transformations in the 

empty rows at the end of the table. 

 

 

Transformation on X Transformation on Y R2 Adequate? Reason(s) 

 

None 

 

None 

 

 

 

 

 

0.293 Yes The residuals are randomly 

scattered around the zero line, 

suggesting that the 

assumption of 

homoscedasticity is met. 
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X  

 

None 

 

 

 

 

 

 

 

 

 

 

 

 

0.405 Yes The residuals are randomly 

scattered around the zero line, 

suggesting that the 

assumption of 

homoscedasticity is met. The 

residuals by row show no clear 

pattern, suggesting that the 

data points are independent. 

 

None Y  

 

 

 

 

 

 

 

 

 

0.223 Yes The residuals are randomly 

scattered around the zero line, 

suggesting that the 

assumption of 

homoscedasticity is met. The 

residuals by row show no clear 

pattern, suggesting that the 

data points are independent. 

Xlog
 

Ylog
 

 

 

 

 

 

 

 

 

 

 

 

 

0.573 Yes The residuals are randomly 

scattered around the zero line, 

suggesting that the 

assumption of 

homoscedasticity is met. The 

residuals by row show no clear 

pattern, suggesting that the 

data points are independent. 
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Xlog
 

 

None 

 

 

 

 

 

 

 

 

 

 

0.585 Yes The residuals are randomly 

scattered around the zero line, 

suggesting that the 

assumption of 

homoscedasticity is met. The 

residuals by row show no clear 

pattern, suggesting that the 

data points are independent. 

Any other transformations you 

wish to try?  List the 

transformation(s) and your 

results here. 

 

X^2 

 

 

 

 

 

 

 

 

None 

 

0.074 

    No The residuals are not randomly 

scattered around the zero line, 

suggesting that the 

assumption of 

homoscedasticity may not be 

met. There is a clear pattern 

such as a funnel shape, which 

would indicate 

heteroscedasticity. 

Any other transformation? 

 

1/X 

 

 

 

None 

0.548 No The residuals are not randomly 

scattered around the zero line, 

suggesting that the 

assumption of 

homoscedasticity may not be 

met. There is a clear pattern 

such as a funnel shape, which 

would indicate 

heteroscedasticity. 

 

 

 

 

 

(b) After exploring all of the transformations, decide on one model to use in 

the next part of the analysis. Indicate which model you have selected in 
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the space below, and also express the model in the original unit of the 

response variable Y. 

 

Based on the R-squared values and the adequacy of the models, the 

transformation with the highest R-squared value and that meets the 

assumptions of homoscedasticity and independence of residuals is the 

model with a log transformation on X (People/Television) and no 

transformation on Y (LifeExp). This model has an R-squared value of 

0.585, which is the highest among all the models that meet the 

assumptions. 

 

So, the selected model is: 

 

Log(People/Television) -> LifeExp 

 

Expressing the model in the original unit of the response variable Y, we 

get: 

 

LifeExp = β0 + β1 * log(People/Television) 

 

where β0 is the intercept and β1 is the coefficient for 

log(People/Television). This model suggests that the life expectancy of a 

country is linearly related to the logarithm of the number of people per 

television set in that country. 

 

 

3) Now that you have settled on a model to use in the regression analysis, use the 

JMP software to build a 95% prediction interval for the life expectancy of a country 

that has 6 people per television. Recall that to do this you must first add a new row 

to the Televisions data set and assign a value of 6 to the “People/Television” 

column. Then, after using the “Analyze” -> “Fit Model” command to fit your chosen 

model, you must go to the red triangle at the top left of the output window and 

select “Indiv Confidence Interval” from the “Save Columns” option under the red 

triangle. This will place the 95% prediction interval lower bound and upper bound 

for each data point as values of two new columns in the Televisions data table. 

 

Record the 95% prediction interval derived from your model for the life expectancy 

of a country that has 6 people per television in the space below: 

 

95% prediction interval: (61.62, 78.94). This means that we can be 95% confident 

that the true life expectancy for a country with 6 people per television will fall within 

this interval. 
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4) (Optional) What kind of fits do you think you would have seen for the transformed 

data had you not excluded any data points? If you have time, go back and explore 

the adequacy of each model for the different combinations of transformed data 

where no data points are excluded. Can you find a model of transformed data that 

actually performs better when no data points are excluded? What does this tell 

you about removing extreme observations from the data set? 

 

Removing extreme observations from a dataset can sometimes improve the fit of 

a model, but it's not always the case. Extreme observations, or outliers, can have 

a significant impact on the fit of a model, especially if the model is sensitive to 

these values, like linear regression models. However, these extreme observations 

can sometimes provide valuable information about the variability in the data, and 

removing them might lead to an oversimplified model that doesn't capture the full 

complexity of the data. 

 

If we were to include all data points, including the extreme ones, in the 

transformations and model fitting, we might see different results. The fit of the 

models might be worse due to the influence of the extreme values, or it might be 

better if the extreme values are actually representative of the underlying 

relationship in the data.  

 

For example, if the extreme values are not just random outliers but are indicative 

of a nonlinear relationship or a relationship with higher variability at certain levels 

of the predictor variable, then a model that includes these points and accounts for 

this complexity might actually have a better fit. 

 

It’s also important to consider the context and the implications of removing or 

including extreme values. If the extreme values are due to measurement errors or 

other factors that are not representative of the population we're interested in, then 

it might be justified to remove them. On the other hand, if the extreme values are 

true observations from the population, then they should be included in the 

analysis. 


