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In this lab we will use the JMP software to further explore linear regression and gain 

practice in model selection, and in particular in using the various stepwise methods of 

deciding on which predictor variables should be included in a multiple linear 

regression model.  

 

 

Preparation 

 

This week we will be using a new JMP data set called SurgicalUnit.jmp which is 

available on the Blackboard site under the Course Documents link. The file contains 

54 observations on the time of survival of patients who had liver surgery. There are 

five covariates: the blood-clotting score, the prognostic index, the enzyme function 

test score, the liver function test score, and the age in years. SOURCE: Neter, et al., 

Applied Linear Statistical Models (1985). 

 

Variable Descriptions: 

Columns 

 x1       Blood-clotting score 

 x2       Prognostic index 

 x3       Enzyme function test score 

 x4       Liver function test score 

 x5       Age 

  y       Survival Time 

 

 

 

Questions 

 

1) A very important question at hand is whether or not we can accurately predict the 

survival of a patient based on some knowledge in the form of the various test 

scores and other variables such as age. Before fitting a multiple linear regression 

model to address this question, let us first try to understand the relationship 

between all of the predictor variables in our dataset. 
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Go to the “Analyze -> Multivariate Methods -> Multivariate” screen and enter all of 

the predictor variables, “x1” through “x5”, into the “Y, Columns” role and then press 

the “OK” button. On the window that pops up, immediately go to the red triangle 

next to the words “Scatterplot Matrix” and turn off the “Density Ellipses”.  

 

This JMP output now displays the correlations between each of the predictor 

variables, as well as all of the different possible scatterplots where the value of 

one predictor variable is plotted against the values of the others, one at a time. 

 

(a) Based on this output, what sort of correlation do you observe among the 

predictor variables in our data set?  Which pairs appear to me most 

correlated? 

 

The scatterplots appear to show random patterns with no particular 

direction or trend, this suggests that there is little to no linear correlation 

between the pairs of predictor variables. In other words, knowing the value 

of one variable does not give much information about the value of the 

other variable. 

 

Based on the correlation matrix, the pairs of predictor variables that 

appear to be most correlated are: 

 

x1 (Blood-clotting score) and x4 (Liver function test score) with a 

correlation of 0.5024 

x2 (Prognostic index) and x4 (Liver function test score) with a correlation 

of 0.3690 

x3 (Enzyme function test score) and x4 (Liver function test score) with a 

correlation of 0.4164 

 

 

(b) What effect might this have on a multiple linear regression model? 

 

The lack of correlation between predictor variables is actually a good thing 

when it comes to multiple linear regression. When predictor variables are 

highly correlated, which is also called multicollinearity, it can make the 

model unstable and the estimates of the regression coefficients unreliable. 

This is because it becomes difficult to disentangle the effects of the 

correlated variables on the response variable. If the predictor variables are 

not correlated with each other, this means that each one provides unique 

information about the response variable, which is what we want in a 

multiple regression model. 
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2) Now let us make a first attempt to predict the survival of a patient using all of the 

knowledge available from the predictor variables. That is, go to the “Analyze -> Fit 

Model” command and place “Survival” in the “Y” role, and all of the covariates, 

“x1” through “x5”, in the “Construct Model Effects” box. Change the “Emphasis” to 

“Minimal Report” and then click the “Run” button to fit the model.  

 

Based on the criteria we have discussed in class, comment on the adequacy of 

this “full” model in the following steps: 

 

 

(a) What is the value of the F-test statistic that appears in the JMP output for 

your fitted model under the “Analysis of Variance” section, and its 

corresponding p-value? State in words the pair of hypotheses that are 

being tested by this F-test, and then interpret the outcome of the test using 

the F-test statistic and p-value. 

 

The F-test statistic in the JMP output is 21.8741 and the corresponding 

p-value is less than 0.0001. 

 

The pair of hypotheses being tested by this F-test are: 

 

- Null hypothesis (H0): All the regression coefficients are equal to zero. 

This means that none of the predictor variables (x1 through x5) have any 

effect on the response variable (Survival Time). 

- Alternative hypothesis (H1): At least one regression coefficient is not 

equal to zero. This means that at least one of the predictor variables has 

an effect on the response variable. 

 

The F-test statistic of 21.8741 is quite large, and the p-value is less than 

0.0001, which is much less than the common significance level of 0.05. 

This means that we reject the null hypothesis and conclude that at least 

one of the predictor variables has a significant effect on the response 

variable. In other words, the model as a whole is statistically significant, 

and it appears that at least some of the predictor variables are useful for 

predicting Survival Time. 
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(b) Scroll down to the “Parameter Estimates” section and perform a t-test to 

determine which parameter estimates are statistically significant in the 

model; that is, test whether each parameter estimate equals zero or not. 

Based on the results of these tests, do you think the full model with all five 

covariates is necessary? Are there any predictor variables that you would 

consider dropping from the model? If so, explain why. 

 

Based on the results of these tests, we can see that the predictor variables 

x1 (Blood-clotting score), x2 (Prognostic index), and x3 (Enzyme function 

test score) are statistically significant at a common significance level (e.g., 

0.05), as their p-values are less than 0.05. This means that these 

variables have a significant effect on the response variable (Survival Time), 

assuming that the other variables are held constant. 

 

On the other hand, the predictor variables x4 (Liver function test score) 

and x5 (Age) are not statistically significant, as their p-values are greater 

than 0.05. This suggests that these variables do not have a significant 

effect on the response variable, assuming that the other variables are held 

constant. 

 

Therefore, we might consider dropping the variables x4 and x5 from the 

model, as they do not appear to provide any additional predictive power 

beyond that provided by the other variables. 

 

 

(c) From the red triangle next to “Response y” at the top of the JMP output, 

select the “Plot Residual by Predicted” and “Plot Residual by Row” 

commands from the “Row Diagnostics” option. Based on these plots and 

the criteria discussed in class, comment on the adequacy of the model. Do 

the residuals appear to be independent and normally distributed around 

zero with constant variance? 

 

The "Residual by Row" plot showing randomness around the center line 0 

indicates that the residuals are independent, which is a good sign. 

However, the "Residual by Predicted" plot showing a fan-out pattern is a 

concern. This pattern suggests that the variance of the residuals is not 

constant, violating the assumption of homoscedasticity in linear regression. 

This could potentially bias the standard errors and thus the statistical 

inference (like confidence intervals and p-values). 
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(d) Does the residual plot suggest any transformation on Y may be necessary?  

If so, apply the transformation for the rest of the analysis. State the 

transformation you have selected. 

 

The fan-out pattern in the "Residual by Predicted" plot suggests that a 

transformation might be necessary to stabilize the variance. A common 

choice in such situations is a log transformation on the response variable Y, 

which can often help in reducing the heteroscedasticity and making the 

model more appropriate for the data. 

 

 

 

3) Let us now use the tools within JMP to implement the techniques of stepwise 

variable selection discussed in class. To do this, go to the “Analyze -> Fit Model” 

menu and setting up the full model as usual, but this time, before clicking the 

“Run” button, change the “Personality” to “Stepwise”. 

 

You will be taken to a new JMP screen that allows you to control the various 

parameters involved in the decision-making process of the stepwise regression. 

As discussed in class, we will use the “P-value Threshold” stopping rule, so first 

change the stopping rule accordingly.  

 

(a) First, we will move in the “Forward” direction, using the default initial 

values for the “Prob to Enter” and “Prob to Leave”. Make sure that all of 

the variables have been removed from the model by clicking the “Remove 

All” button, and then click the “Go” button to have JMP perform the 

stepwise regression. At the end of the process, the predictor variables that 

are checked in the “Current Estimates” section will have been the ones 

chosen to be in the final model. At this point, you can click the “Run Model” 

button to run and inspect the adequacy of that current model. Take a few 

minutes to familiarize yourself with this new JMP screen by trying different 

“Prob to Enter” and “Prob to Leave” values and trying the different 

directions of stepwise regression such as “Forward”, “Backward”, and 

“Mixed”. Remember that for “Forward” stepwise regression you must 

remove all predictor variables from the model to start fresh, and that for 

“Backward” stepwise regression you must instead enter all predictor 

variables to the model to start fresh. 

 

Although we have not discussed them in much detail in the class, the AICc 

and BIC values offer criteria similar to the P-value Threshold that help us 

determine which predictor variables to include in our model. Try the 

stepwise regression procedure using those information criteria to see how 
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they compare to the P-value Threshold. 

 

Note that different criteria may lead to different models and all of them may 

be adequate.  In the table below, list all the different model selection 

procedures that you have tried and  

 

 

 

 

(b) Based on your answers in part (a), choose your final model and write 

down the fitted model in the space below. 

 

It seems that the models selected by Forward Selection (with both sets of 

probabilities), Mixed Selection, AIC, and BIC all include the variables x1, 

x2, x3, and x4 and have the same R^2 value of 0.691041. The model 

selected by Backward Elimination includes the variables x1, x2, and x3 

and has a slightly lower R^2 value of 0.684128. 

 

Given that the majority of the methods selected the model with x1, x2, x3, 

Method Prob to 

enter/leave 

Fitted model R
2 

Notes on the fit 

Forward 

Selection 

 

0.25/0.1 x1, x2, x3, x4 0.69

104

1 

/ 

Forward 

Selection 

(Use different 

prob to Enter) 

0.05/0.1 x1, x2, x3, x4 0.69

104

1 

/ 

Backward 

elimination 

0.25/0.1 x1, x2, x3 0.68

412

8 

/ 

Mixed 

 

0.05/0.05 x1, x2, x3, x4 0.69

104

1 

/ 

AICC / x1, x2, x3, x4 0.69

104

1 

/ 

BIC / x1, x2, x3, x4 0.69

104

1 

/ 
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and x4 and that this model has the highest R^2 value, it seems reasonable 

to choose this as the final model.  

 

So we have: 

 

y = β0 + β1*x1 + β2*x2 + β3*x3 + β4*x4 + ε 

 

where y is the survival time, x1 is the blood-clotting score, x2 is the 

prognostic index, x3 is the enzyme function test score, x4 is the liver 

function test score, β0 is the intercept, β1 through β4 are the coefficients 

for the predictor variables, and ε is the error term. 

 

 

(c) Suppose that you received the following information on two new patients: 

 

Patient 1  

x1   5.5 

x2   75 

x3  101 

x4  3.14 

x5  38 

 

Patient 2  

x1   7.6 

x2   35 

x3  71 

x4  2.71 

x5  59 

 

Enter these patients as two new rows in the SurgicalUnits data table, and 

then fit your model chosen in part (b) again and use it to predict the 

survival of each patient as usual by using the 95% Indiv Confidence 

Interval command under the “Save Columns” option in the red triangle on 

the JMP output for your fitted model. Write down your answers for each 

patient. If your fitted model involves transformation on Y, remember to 

transform it back to the original scale. 

 

  95% Prediction Interval for Survival Time 

Patient 1 (605.46937513, 1575.2599407) 

Patient 2 (44.063286732, 1021.5407263) 

 

 


