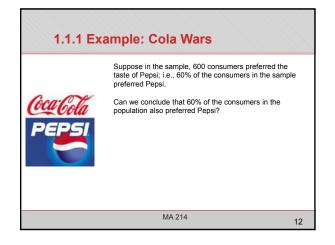
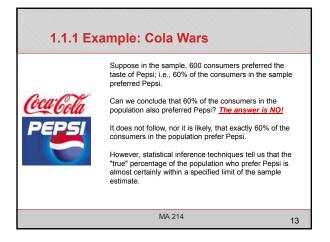
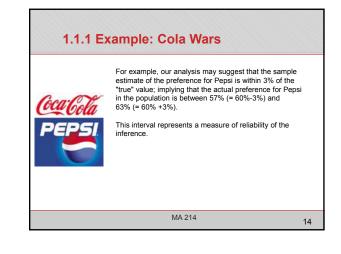
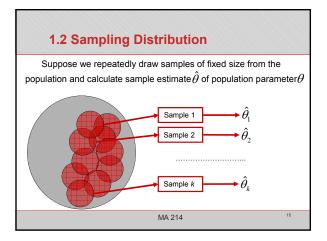


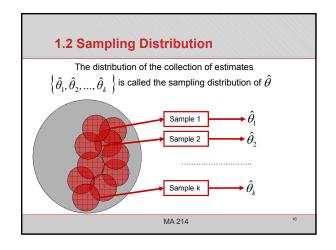
1.1.1 Example: Cola Wars		
Coa Cola PEPSI	Population	Collection of all cola consumers
	Sample	1000 customers selected from the population
	Variable	Age, Gender, and the preference (A or B) of cola
	Inference of Interest	To generalize the consumer preference of 1000 sampled customers to the whole population of cola consumers
MA 214 11		

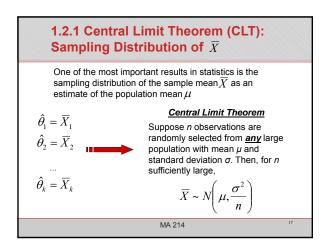


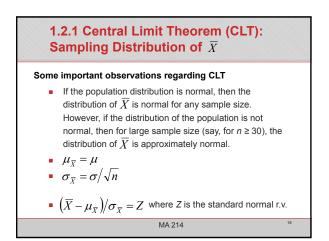


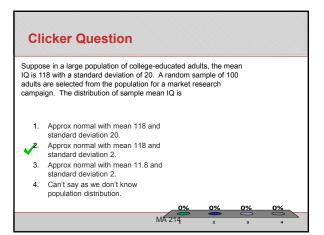










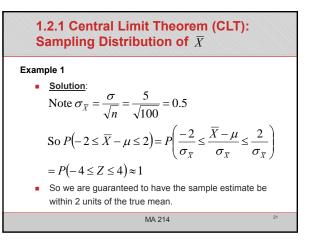


1.2.1 Central Limit Theorem (CLT): Sampling Distribution of \overline{X}

Example 1

Suppose we are trying to estimate the average weight of a certain animal based on a random sample of 100 observations. Suppose it is known that the standard deviation of the weight is 5. What is the probability that the estimate is within 2 units of the true mean?

MA 214



1.2.1 Central Limit Theorem (CLT): Sampling Distribution of \overline{X}

Example 2

• Suppose a bank manager wants to find out the "true" rate at which customers arrive within a 10 minute period at the branch between 12 – 1 PM. The manager collected data between 12 – 1 PM for 30 consecutive days (i.e. n = 180), and found $\overline{X} = 8.1$ arrivals per 10 minutes with a standard deviation s = 2.99. Does this data support the manager's hypothesis that the actual mean arrival rate $\mu = 9$?

MA 214

1.2.1 Central Limit Theorem (CLT): Sampling Distribution of \overline{X}

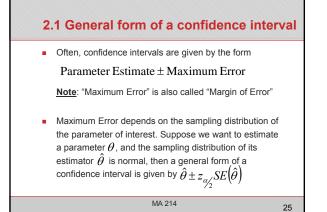
Example 2

• Solution: The question is that if the hypothesis is true, and the mean $\mu = 9$, then is it possible to observe a sample mean \overline{X} to be 8.1 or less?

$$P(\overline{X} \le 8.1) = P\left(\frac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{X}}} \le \frac{8.1 - 9}{0.223}\right) = P(Z \le -4.04) \approx 0$$

MA 214

2 Confidence Interval estimate provides a range of plausible estimates of the parameter of interest
We use sample information to construct a confidence interval, which, with (1-a)*100% confidence, contains the true parameter. Thus if an experiment is repeated, and a 95% confidence interval is constructed each time, then we should expect 95% of those intervals to cover the true value of the parameter



2.1 General form of a confidence interval

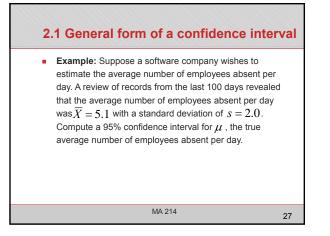
 In particular: a large sample (n ≥ 30) confidence interval for a population mean µ is given by:

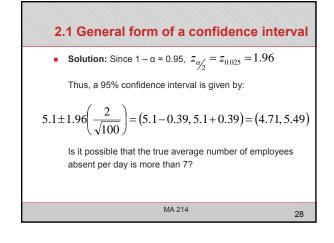
$$\overline{X} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right)$$

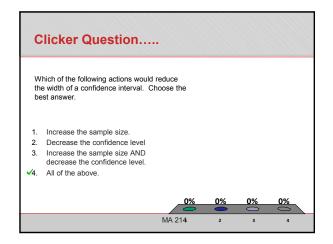
- Note that a narrower interval is better than a wider interval, as a narrow interval contains more information
 Larger confidence level leads to wider interval
 - Larger sample size leads to narrower interval

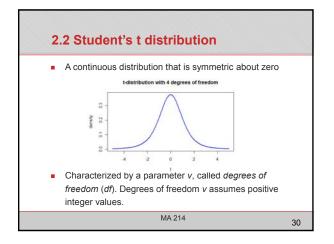
MA 214

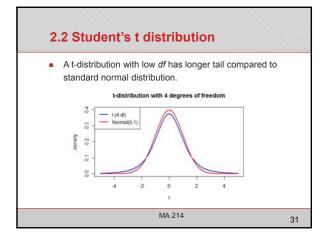
26

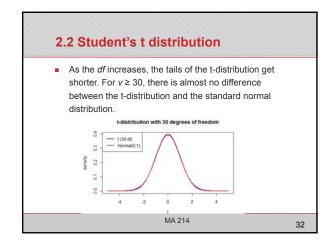


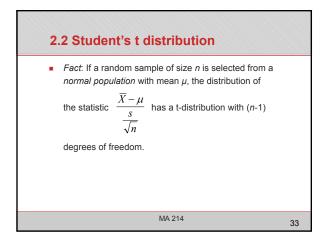


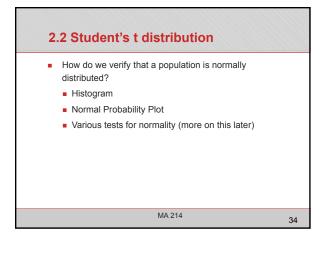


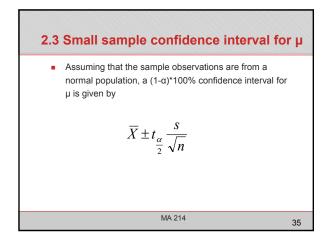


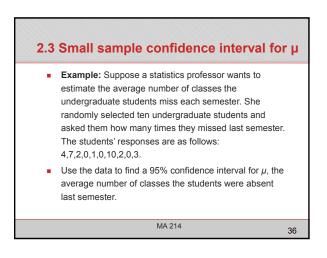


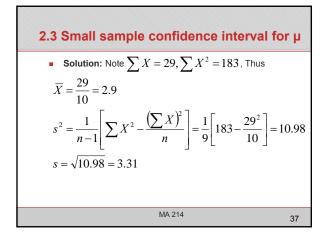


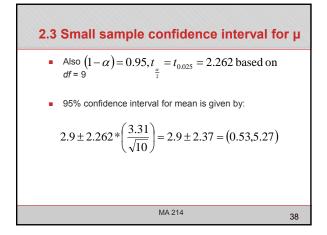


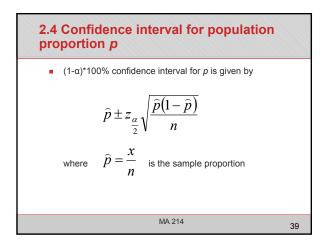


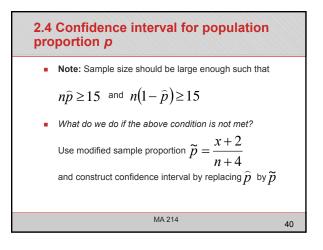


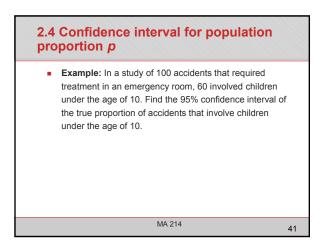


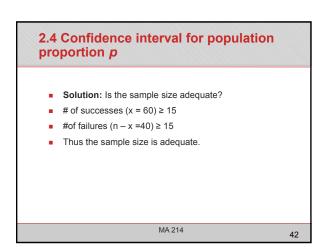


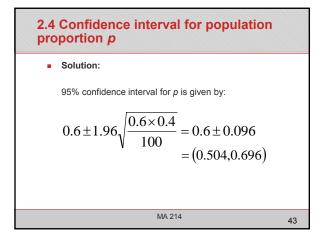


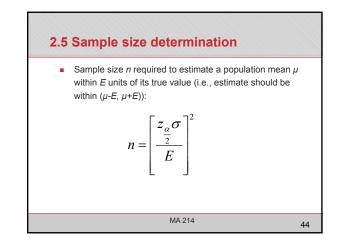


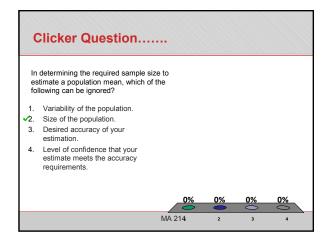


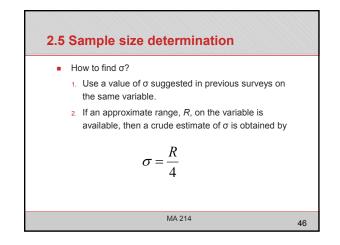


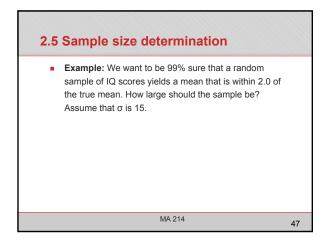


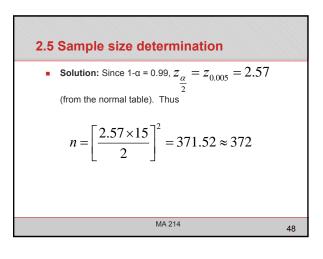












 Sample size n required to estimate a population mean p within E units of its true value (i.e., estimate should be within (p-E, p+E)):

$$n = \frac{\frac{z_{\frac{\alpha}{2}}^2 p(1-p)}{E^2}}{E^2}$$

 Note: If prior information about *p* is available, we can use that value of *p* to estimate the sample size. If no information is available, use *p* = 0.5.

MA 214

49

