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MA 214

MA 214: Applied Statistics

Instructor: Ashis Gangopadhyay

Regression Analysis

Part II
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Where We’ve Been

 Discussed the meaning of Regression 

Model

 Introduced model fitting via least square

 Learnt how and why we carry out statistical 

inference of model parameters.

 Discussed how to use the fitted model for 

prediction.
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Where We’re Going

 To quantify how well the model fits the data. 

 To judge if the fitted regression model is an 

adequate description of data (model 

adequacy check).

 To identify the remedial measures if the 

model turns out to be not a good fit to the 

data.
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Analysis of Variance Approach to 
Regression
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Analysis of Variance Approach to 
Regression
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Analysis of Variance Approach to 
Regression

Data: {(x1,y1),…,(xn,yn)}

A measure of overall variability of the observations on the 
dependent variable:

Total Sum of Squares (SSTO) =  
2
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Residual variability after fitting the regression model:

Error Sum of Squares (SSE) =  
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Thus, the part of the total variability explained by regression:

Regression Sum of Squares (SSR) = SSTO – SSE
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Analysis of Variance Approach to 
Regression

Analysis of Variance Table for Simple Linear Regression

Source of Variability SS DF MS F-Statistic

Regression SSR 1 MSR

Error SSE n-2 MSE

Total SSTO n-1

MSE

MSR
F 

Abbreviations:
SS = Sum of Squares
SSR = Regression Sum of Squares
SSE = Error Sum of Squares

DF = Degrees of Freedom
MS = Mean Squares = SS/DF
MSR = Mean Squares Regression
MSE = Mean Square Error
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Analysis of Variance Approach to 
Regression

Computational Formulas for Sum of Squares
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Also note the relationship: SSTO = SSR + SSE
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Salary Example

38455960)229.14(931)675.0(88021 SSE

Note the relationship: SSTO = SSR + SSE
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Salary Example

ANOVA

Source SS DF MS F

Regression 11945 1 11945 31.06

Error 3845 10 384.5

Total 15790

MA 214
11

Coefficient of Determination (R2)

=Proportion of total variability explained by regression

Note: 10 2  R

Example:

756.0
15790

119452 
SSTO

SSR
R
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In this example, R2 =0.756 means…

1 2 3 4

0% 0%0%0%

1. 75.6% of the variability of 
Experience is explained by 
the model.

2. 75.6% of the variability of  
Salary is explained by the 
model.

3. 75.6% of the time 
covariate Experience can 
predict Salary correctly.

4. 24.4% of the variability of 
Salary is explained by the 
model.
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Coefficient of Determination (R2)

1.1.1 How to interpret R2 value?

R2 “large”: Covariate(s) explains almost all of the 
variability of the dependent variable. Thus the model 
is a very good fit to the data.

R2 “moderate”: Covariate(s) explains a part of the total 
variability of the dependent variable. Need to develop 
better model possibly incorporating additional 
covariates.

R2 “low”: Covariate(s) explains only a very small part 
of the total variability, suggesting a reinvestigation of 
the problem with a new set of covariates.

***

**

*
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Coefficient of Correlation

Definition 1:

0ˆ if or   ;0ˆ if 1
2
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 Correlation coefficient (r) is a measure of the strength of the 

linear relationship between the dependent variable and the 

independent variable in a linear regression model.
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

 If the two variables are strongly positively related, then the 

value of the correlation coefficient r is close to 1.

 If the variables are strongly negatively related, then the value 

of the correlation coefficient r is close to -1.

 Correlation coefficient r close to 0 suggests a lack of a linear 

relationship between the variables.
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Coefficient of Correlation

1.2.1 Interpretation of correlation coefficient r

11  r
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Coefficient of Correlation

Correlation
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Coefficient of Correlation
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Since                                   we have that
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1.2 Coefficient of Correlation

Example 1: Compute the correlation coefficient r for

,0229.141̂ 

,869.0756.02  Rr

suggesting a strong linear relationship between years of 
experience and annual salary of graduates from this school!
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If you believe strongly that the more hours students 
work at a job, lower their GPA would be, then which 
correlation you would expect to find?

1. 2. 3. 4.

0% 0%0%0%

1. -0.7

2. 0.02

3. 0.5

4. 0.7
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Let’s play the correlation game .  The 
correct answer is…..

1 2 3 4 5

0% 0% 0%0%0%

1. A

2. B

3. C

4. D

5. E
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 Note that |r| > R2 (unless R2 is 0 or 1, when equality holds). 

Thus the use of correlation coefficient as a measure of 

performance of a linear regression model may be misleading, 

as it may provide a false sense of overall fit of the model to 

that data. R2 is a better measure of goodness of fit of a 

regression model, and it has a clear interpretation in terms of 

the proportion of total variability explained by the covariates in 

the model.

21

Coefficient of Correlation

Some things to remember!
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 It is important to note that if r = 0, it only means that there is 

no linear relationship between covariate X and dependent 

variable Y; however, that doesn’t necessarily imply that there 

is no relationship between these variables! Consider the 

following example, where Y is perfectly related to X according 

to the functional relationship Y = X2; however, it is easy to 

check that r = 0.
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1.2 Coefficient of Correlation

Some things to remember!
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Coefficient of Correlation

Y = X2, but r = 0
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A researcher found that r = +.92 between the high 
temperature of the day and the number of ice cream 
cones sold at Boston Common. This result tells us that

1 2 3 4

0% 0%0%0%

1. High temperature causes 
people to buy ice cream.

2. Buying ice cream causes 
temperature to go up.

3. Some extraneous variable 
causes both temperature 
and ice cream sale to go 
up.

4. Temperature and ice 
cream sales have a strong 
positive linear relationship.
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Correlation does not imply Causation

• Lawlor DA, Davey Smith G, Ebrahim S (June 2004). 

"Commentary: the hormone replacement-coronary heart disease 

conundrum: is this the death of observational epidemiology?". Int

J Epidemiol 33 (3): 464–7

• Numerous epidemiological studies showed that women who 

were taking combined hormone replacement therapy (HRT) also 

had a lower-than-average incidence of coronary heart disease 

(CHD), leading doctors to propose that HRT was protective 

against CHD. 
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Correlation does not imply Causation

• However, a careful analysis of the data  from the epidemiological 

studies showed that women undertaking HRT were more likely to 

be from higher socio-economic groups, with better than average 

diet and exercise regimens. 

• The use of HRT and decreased incidence of coronary heart 

disease were coincident effects of a common cause (i.e. the 

benefits associated with a higher socioeconomic status), rather 

than cause and effect as had been supposed.

• As a matter of fact, randomized controlled trials showed that 

HRT caused a small but statistically significant increase in risk of 

CHD. 
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F-test under ANOVA for simple linear 
regression model

The F-statistic in the ANOVA table tests the following 
hypothesis:

H0: β1 = 0      vs.      Ha: β1 ≠ 0

Test Statistic:
MSE

MSR
F 

Decision Rule: Reject H0 if F > Fα, where Fα is based on 
(1, n – 2) degrees of freedom
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F-test under ANOVA for simple linear 
regression model

Example 1: Carry out the F-test at 5% level of significance 
in the 

H0: β1 = 0      vs.      Ha: β1 ≠ 0

F = 31.06

F0.05 = 4.965 with (1,10) degrees of freedom

Since F > F0.05, reject the null hypothesis.
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F-test under ANOVA for simple linear 
regression model

Remark: It should be noted that earlier we discussed an 
alternative approach to test the hypothesis H0: β1 = 0 which is 
based on the t-distribution. Referring to the result, we 

   





FF

ntt









965.406.31

228.257.5

228.257.5

df) 10  2(with  
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F-test under ANOVA for simple linear 
regression model

• Thus both the t-test and the F-test are 
equivalent! So why do we need two different 
ways of testing the same hypothesis! 

• The answer is that this equivalence is only 
true for simple linear regression with one 
covariate in the model. In multiple regression 
models (more than one covariate), which we 
will be discussing later in this course, the F-
test in ANOVA plays a crucial role in 
understanding the validity of such models.
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Statistical Modeling
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F-test under ANOVA for simple linear 
regression model
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F-test under ANOVA for simple linear 
regression model
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Model is a good fit to the data in…..

1 2 3 4 5

0% 0% 0%0%0%

1. All four cases

2. Only for case 1

3. Only for case 2

4. Only for case 3

5. Only for case 4
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F-test under ANOVA for simple linear 
regression model

Caution

 Regression analysis is perhaps the most widely used 

statistical technique, and probably the most widely misused.

 Just because you can fit a linear model to a set of data, does 

not mean you should.
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Verification of model adequacy

Let’s consider the simple linear regression model given by

iii xy   10

where the random errors                                are independent

random variables that are normally distributed with mean 0 

and variance σ2.

}..., ,2 ,1,{ nii 
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Verification of model adequacy

Note that the underling assumptions of the model are:

 Linearity: The dependent variable Y and covariate X are 

linearly related.

 Normality: Random errors are normally distributed.

 Constant variance: Error variance is constant across all 

values of the covariate X.

 Independence: Errors associated with the observations are 

mutually independent.
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Verification of model adequacy
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Verification of model adequacy

1.4.1 Residual Analysis

 Residual Analysis is a technique that allows us to detect 

violations of the assumptions of a regression model by 

examining the residuals.

 Residual Plot

 Plot of residuals against the corresponding values of the 

covariate, i.e., plot of

 Plot of residuals against fitted (predicted) values; i.e., plot 

of   niye ii ,...,2 ,1,ˆ, 

  nixe ii ,...,2 ,1,, OR
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Verification of model adequacy

1.4.1 Residual Analysis

 Detection of nonlinearity and heteroscedasticity 

Violations of linearity and constant variance assumptions can 

be detected by examining the residual plots.

 Scenario 1: In a residual plot, the residuals are randomly 

scattered around the zero level within two parallel bands.

No apparent violation of either linearity or 
constant variance assumptions.
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Verification of model adequacy

1.4.1 Residual Analysis

 Detection of nonlinearity and heteroscedasticity 

Violations of linearity and constant variance assumptions can 

be detected by examining the residual plots.

 Scenario 2: In a residual plot, the residuals exhibit distinct 

nonlinear pattern.

Linearity assumption is violated, and the 
dependent variable Y is related to the covariate 
X via a nonlinear model.
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Verification of model adequacy

1.4.1 Residual Analysis

 Detection of nonlinearity and heteroscedasticity 

Violations of linearity and constant variance assumptions can 

be detected by examining the residual plots.

 Scenario 3: The residual plot fans out or fans in.

Variance is not constant. If the residual plot fans 
out, then the variance is increasing as a 
function of the covariate X; if the plot fans in, 
then the variance is a decreasing function of X.
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Verification of model adequacy
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Verification of model adequacy

Residual Analysis

 Detection of nonnormality 

Nonnormality of the error term in the regression model can be 

detected easily by examining the normal probability plot of the 

residuals. If the plot is approximately a straight line, then the 

normality assumption is true, otherwise the assumption is 

false.
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Verification of model adequacy

MA 214

Verification of model adequacy

 Residual Analysis to verify Independence

Plot the residuals against the order of data collection. 
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For the job training data, the residual 
analysis shows that the fitted model is…

1 2 3 4

0% 0%0%0%

1. Adequate

2. Not adequate due to 
heteroscedasticity. 

3. Not adequate due to 
nonlinearity.

4. Not adequate due to 
nonnormality

MA 214

For the blood plasma data, the resiidual 
analysis shows that the fitted model is….

1 2 3 4

0% 0%0%0%

1. Adequate

2. Not adequate due to 
heteroscedasticity.

3. Not adequate due to 
nonlinearity.

4. Both 2 and 3.



3/13/2012

9

MA 214
49

Detection of outliers

Frequently, in regression analysis, the data 
may contain observation(s) that are outlying 
or extreme. These observations are called 
outliers. Outliers may have a dramatic effect 
on regression analysis.
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1.6 Detection of outliers

Influential Observation
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1.6 Detection of outliers

Regression Output
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1.6 Detection of outliers

Another Diagnostic Tool: Residual Plots

Original Model

Revised Model

____________________________________________________
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1.6 Detection of outliers

Another Influential Observation?
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1.6 Detection of outliers

Another Diagnostic Tool: Residual Plots

Revised Model

Further Revised 
Model

____________________________________________________
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1.6 Detection of outliers

Re-estimate parameters
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1.6 Detection of outliers

Final Revised Model
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Detection of outliers

Cook’s distance

 It is a measure of influence of a data point; i.e., the 

effect that omitting an observation has on the 

estimated regression parameters.

 Rule of thumb: Observations with cook’s distance Di > 

2 have high influence. You may also be concerned 

about any observation that has Di < 2, but has a much 

bigger Di than other observations.
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Detection of outliers

How to deal with possible outliers in the data?

 NO. Then proceed with the observations included in 

the data. Study the observations to see if anything can 

be learned.

 YES. Then, is there reason to believe that the 

observation belongs to a population other than the one 

being investigated?

Remove the observations suspected as outliers from the data. 
Do the estimates of the parameters change when 
observations are deleted?
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Detection of outliers

How to deal with possible outliers in the data?

 YES. Delete the observation and proceed.

 NO. Then, does the observation have an unusually 

distant independent variable?

YES. Then, is there reason to believe that the observation 
belongs to a population other than the one being investigated?

Remove the observations suspected as outliers from the data. 
Do the estimates of the parameters change when 
observations are deleted?
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Detection of outliers

1.6.2 How to deal with possible outliers in the data?

 YES. Delete the case and proceed.

 NO. Not much can be said. More data needed to 

resolve the question.

YES. Then, is there reason to believe that the observation 
belongs to a population other than the one being investigated?
NO. Then, does the observation have an unusually distant 
independent variable?

Remove the observations suspected as outliers from the data. 
Do the estimates of the parameters change when 
observations are deleted?
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Remedial Measures

Most common transformations

It may be possible to fix some of the violations of the 
assumptions of the linear regression model by applying 
certain transformations to the data. These transformations can 
be applied either to the dependent variable Y or to the 
independent variable X or both.

Transformations on dep. var. on ind. var.

Square root

Log

Inverse

Y X
 Ylog  Xlog
Y1 X1
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Remedial Measures

Some remarks regarding these transformations:

 These classes of transformations are generally called 

power transformations. The transformations are written 

in the increasing order of their “strength.” Thus, square 

root transformation is the weakest of the group, 

logarithmic transformation is the second strongest, etc. 

It is important to note that we need to apply the 

weakest transformation that gets the job done, and it is 

a bad idea to apply a transformation stronger than 

necessary.
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Remedial Measures

Some remarks regarding these transformations:

 Unfortunately, it is difficult to guess the correct 

transformation that may fix the problem associated 

with the model. Thus we need to try a range of 

transformations, and check the corresponding 

residuals to verify if the transformation has been 

successful in remedying the problem. However, there 

are some rule of thumbs that one can use in deciding a 

candidate transformation that is most likely to be 

successful.
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Remedial Measures

Some remarks regarding these transformations:

 It is important to note that although the transformation 

technique can often remedy the problems associated 

with linear regression, there are situations where 

suitable power transformations may not be available, 

and more complex techniques may be needed to 

remedy the problem.
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Remedial Measures

Selection of transformation to remedy non-linearity:  If the 
scatterplot looks like

Then try 
transforming 
Y first.

MA 214
66

Remedial Measures

Selection of transformation to remedy non-linearity: If the 
scatterplot looks like

Then try 
transforming 
X first. 
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Remedial Measures

Selection of transformation to remedy non-linearity: If the 
scatterplot looks like 

Then try 
transforming X 
and/or Y, but 
choose the 
variable with 
wider range first.
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Remedial Measures

 Note that non-constant variance is a property of the 

dependent variable Y, as it is the conditional variance 

of Y given X = x that is not a constant. This suggests 

that the remedial measure must involve a 

transformation of the dependent variable Y. Frequently 

either        or               transformations are effective in 

fixing non-constant variance.

Selection of transformation to remedy non-constant variance

Y  Ylog
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Remedial Measures

Selection of transformation to remedy non-normality

 Usually non-normality and non-constant variance occur 

together, and the transformation applied to remedy 

non-constant variance is all you need to remedy non-

normality.
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For the job training data,  is the model 
adequate after square root transformation?

1 2 3

0% 0%0%

1. Yes, adequate.

2. No, consider 
another 
transformation

3. Not sure.
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For the blood plasma data, is the model 
adequate after square root transformation?

1 2 3

0% 0%0%

1. Yes, adequate.

2. No, consider 
another 
transformation.

3. Not sure.


