MA 214: Applied Statistics
Instructor: Ashis Gangopadhyay

Regression Analysis
Part Il

Where We’ve Been
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We were discussing....

= How to fit a linear regression model with one
covariate.

= How to quantify the goodness of fit of the
model.

= How to verify the adequacy of the fitted
model.

= How to implement the remedial measures.
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Where We’re Going

= Develop methodology to fit regression
model with multiple covariates.

= |dentify the subset of the covariates that
provide a simple and useful interpretation of
the model.

= Understand the nature of nonlinear
regression models and regression model
with categorical covariates.

Multiple Regression
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= Often the performance of a regression model can
be improved by having more than one covariate in
the linear regression model. The resulting model is
called a multiple regression model.

Example: A real estate agent wants to develop a model to predict the
housing prices in a neighborhood based on certain characteristics of
the homes. She collected the data on the selling prices of eight homes
recently sold in the neighborhood along with covariate information on
area, taxes, acreage and rooms. i

Multiple Regression

= Collected Data:

Price Area Taxes Acreage Rooms \

145 15 1.9 2.00 5

228 38 3.0 3.60 11
150 23 14 1.80
130 16 14 0.53
160 16 15 0.50
114 13 18 0.31
142 20 2.4 0.75
265 24 4.0 2.00
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Multiple Regression
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General structure of data in multiple regression

Data: Legend:
If ;/ X, X XXp-1 Y, : ith observation on Y
X L. ,p-1
Lot X . X; - ith observation on jth
Yoo X X o o T2pa covariate
i=1,2,..n
j=12..,p-1
N Yo Xy X %np-1
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Multiple Regression model

Vi =B+ BiXa + BoXip ot By Xyt &
i=12,..,n

where &; are independent random error terms that
are normally distributed with 0 mean and constant
variance o02.

Note that the model implies that all (p — 7)
covariates are linearly related to the dependent
variable Y. Also note that p is the number of
regression parameters.

Multiple Regression Model
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Multiple regression model

Parameter Estimation
Model parameters ﬂo , ,31,..., ﬂp71 are estimated by

minimizing the least square criterion:

f(ﬂO'ﬂl'""ﬁp—l): Z:ﬂ(yi -5 7ﬁ1xi17"'7ﬂp—1xi,pfl)2

Multiple regression model
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Plot of the fitted curve ¥ = 3 4 2X, + 6X,

In the fitted model, Y = 3 + 2X; + 6X;, the
interpretation of the coefficient of X, is....

1. Average Y increases by 2
units as X, increases by
one unit.

2. Average Y increases by 2
units as X, increases by
one unit.

3. Average Y increases by 6
units as X, increases by
one unit.

V4. Strictly speaking, none of
these answers are correct.

25% 25% 25% 25%
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Multiple regression model

Fitted model: Y = /3 + 4, X, + £, X, +..t B, 10X ;4
Fori=12,..,n,

Fitted values: §, = /3, + X, + X, + .+ ﬁpflxi,pfl

Residuals: €, = Y, — 9i

Thus, SSE =3",e%
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The degrees of freedom of the SSE is

Multiple regression model

Estimate of 02 :

n el
67 = MSE = SSE —ZH d
n—p n—p
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Multiple regression model

1. n-1 25%  25% 25%  25%
2.n-2
3. p-1
V4. n-p
MA 214 2 3 a
Multiple regression model
ANOVA table for multiple regression
Source SS DF MSs F
Regression | SSR | p-1 MSR F:@
MSE_|
Error SSE n-p MSE
SSTO | SSTO| n-1
n _ 2
ssTo=>".(v;-Y) 2
SSE=>" (vi—9)
n “ _\2
SSR=Y"" (;—y) =SSTO-SSE
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Coefficient of determination R?

,  SSR
SSTO

Note that R2 measures the proportion of the total
variability jointly explained by the covariates

(Xi, X s Xy 1)

MA 214

Multiple regression model

F-test
The F-statistic in ANOVA tests the following null and
alternative hypothesis:

Ho:Bi=5, ="'=ﬂp71=0

H, : notall s areequal to 0.
Note that the null hypothesis states that none of the covariates
are linearly related to the dependent variable, whereas the
alternative hypothesis states that at least some of the covariates
in the model are linearly related to the dependent variable Y,
hence are useful predictors of the dependent variable.

Multiple regression model
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F-test

This is an important test, as the rejection of the null hypothesis
states that the model is statistically sound.

Test Statistic: F = @

MSE

Decision Rule: Reject H, if F> F,

(where F, is based on F,_; ., distribution).
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Multiple regression model

Real Estate Example

Test for individual regression parameter g;

Hy:8=0 vs. H,:B;#0
b
s\

Decision Rule: Reject H, if t > {,, or t < -,

Test Statistic: [ =

(where t,, is based on n —p df).

= Consider a simpler problem first. Suppose we
wish to model the price of the homes in this
neighborhood based on two covariates, Area
and Rooms.

= Fit the model using JMP.
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Real Estate Example

Real Estate Example

Response Price
Summary of Fit

RSquare 0.746773
RSquare Adj 0.645482
Root Mean Square Error 30.97909
Mean of Response 166.75
Observations (or Sum Wgts) 8

Analysis of Variance

Sum of
Source DF Squares Mean Square  F Ratio
Model 2 14150.979 7075.49 7.3726
Error 5 4798.521 959.70 Prob > F
C. Total 7 18949.500 0.0323*
Parameter Estimates

Term Estimate Std Error tRatio Prob>|t|
Intercept  163.99034  53.86239 3.04 0.0286*
Area 9.0803749  2.530869 3.59 0.0157*
Rooms -23.80943 11.098 215 0.0847

= Thus the fitted model is

Price = 163.99 + 9.08*Area - 23.80*Rooms

= |s this a reasonable model in this
context?
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Is the model
Price = 163.99 + 9.08*Area - 23.80*Rooms
reasonable?

Real Estate Example

Response Price

1. Yes, itis a good model for
the response variable
Price.

2. No, the intercept is too big.

3. No, the estimate of the
slope for Area seems
unreasonable.

. No, the estimate of the

/ slope for Rooms seems

unreasonable.

25% 25% 25% 25%
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Summary of Fit
RSquare 0.941666 —
RSquare Adj 0.863888
Root Mean Square Error ~ 19.19546

JMP output Mean of Response 166.75

. Observations (or Sum Wagts) 8
with all four Analysis of Variance
. Sum of

covariates Source DF  Squares MeanSquare F Ratio
Model 4 17844103 446103 12.1070
Ermor 3 1105307 368.47 Prob>F
C. Total 7 18949.500 0.0340*
Parameter Estimates
Term Estimate Std Error tRatio Prob>]t]
Intercept  139.12427 5029193 277 0.0698
Area 13606913  6.06165 224 0.1105
Tax 21478074 1275063 166 0.1955
Acreage  -36.49451 2409685 151 02271
Rooms 318276 14.82528 245 0.1211
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Correlation plots of the covariates for real

estate data Multivariate
Correlations.
Nea Tox posam Foons
wes oo ooz ases oarre —
Areago 0% 08 g0 04768
Plot shows strong Roomosi 0xis o 1o
Scatterplot Matrix
correlation between 1

254 Awa

some of the covariates. =]

P . . Acreage
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Some important issues in multiple
regression

Consequences of multicollinearity:

= In the presence of multicollinearity, the estimated
regression coefficients {8, i =1, 2, ..., n} tend to have
large variability. This can result in extreme situations
where the F-test shows a significant overall regression
relation between the dependent variable and the
covariates, but then the t-tests for individual 8;'s are not
significant... an apparent contradiction!
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Some important issues in multiple
regression

Selection of independent variables

= Suppose in a regression model we have (p — 1)
covariates. The question is how to come up with a
subset of these covariates that provide essentially the
same information about the dependent variable as the
whole set of covariates currently in the model. The
objective is to come up with a short list of covariates
that adequately describe, predict and control the
dependent variable with minimal multicollinearity.
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Some important issues in multiple
regression

Multicollinearity:

When the covariates are highly correlated among themselves,
difficulties can occur in carrying out inferences for individual
covariates. In addition, correlation among covariates makes the
interpretations of the coefficients of the covariates questionable.

This phenomenon is called multicollinearity.

MA 214
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Some important issues in multiple
regression

Consequences of multicollinearity:

= However, this happens because an individual t-test
measures the additional contribution of each individual
covariate beyond that of all other covariates already in
the model. If a particular covariate if highly correlated
with the other covariates in the model, then it makes
very little independent contribution, making the
contribution of the covariate redundant.
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Multicollinearity refers to a situation in which

1. Residuals are 25%  25%  25%  25%
correlated. (M I
2. Response variable is

highly correlated with
the covariates.

. High degree of
correlation between
the covariates.

4. Negligible correlation
between covariates.

MA 214 2 3 4




Some important issues in multiple
regression

Model selection techniques

= R2procedure

= Stepwise procedure

= AIC (Akaike Information Criterion)

= .and many others

Some important issues in multiple
regression
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R? procedure

= The procedure is implemented by carrying out
regression of the dependent variable Y on all possible
subsets of the covariates (X3, Xy, ..., X,.4), and
computing R? in each case.

= Objective is to find the subset of the covariates such
that adding more covariates only leads to a small
improvement to R2.
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Some important issues in multiple
regression

R? procedure

= Consider the following example: Suppose we have three covariates
(X;, X5, X3) in the model. Carrying out regression on all possible
subsets of the covariates, we get the following R? values.

# of Covariates Covariates R?

1 X, 0.32

1 X, 0.51
1 X, 0.42
2 X, X, 0.64
2
2

X, Xy 0.72

Xp X5 0.61
3 Xy, Xp X5 0.74
= Which of these models is the “best’?
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Some important issues in multiple
regression
Plot of largest R? versus # of Covariates in the model
E ° 3";
0 1 2 3 4
# of Covariates
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Some important issues in multiple
regression

Stepwise Regression

= |In multiple regression models, the response variable Y
may depend on many covariates.

= Stepwise regression is a variable selection technique
that tries to find the subset of the covariates that best
predicts the response variable Y.

= One advantage of the stepwise procedure is that the
variable selection is carried out automatically.

Some important issues in multiple
regression
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Stepwise Regression

= However, the procedure is complex. It involves a series
of hypothesis testing procedures that decide whether
to include or not to include a variable in the model.
There are three variations of the stepwise procedure:

= Forward selection: begin with the smallest possible
regression model, i.e., with just one covariate, and
gradually work up to the multiple regression model
incorporating the largest number of significantly
important independent variables.

MA 214 36




Some important issues in multiple
regression

Stepwise Regression
= Backward elimination: begin with all covariates and
gradually eliminate variables one by one until one
reaches the point where all remaining covariates are
significantly important.

Stepwise: begin in the same way as forward
selection, but each time a variable is added all
variables in the model are examined to see if any
should be eliminated at that step. This is a
computationally more demanding procedure.

Some important issues in multiple
regression
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Stepwise Regression (Forward Selection)

= Begin by performing a normal multiple regression. If all
variables are shown as significant (P-values < a), then
STOP — the complete model is good.

= Butif F-test is significant, but one or more of the p-
values for the t-tests are high (showing some of the
covariates are not significant), forward stepwise
regression can be used to develop the best model that
contains some of the variables as follows.
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Some important issues in multiple
regression

Stepwise Regression (Forward Selection)
= STEP 1: Do simple linear regression of y vs. each x variable

individually. Select the x variable with the lowest p-value. (Suppose it
is X;.)

= STEP 2: Do all possible 2-variable regressions in which one of the two
variables is Xj.

= If none of the 2-variable regressions gives low p-values for both X;
and the other variable — STOP — use the model utilizing only Xj.

= |f one or more of the 2-variable models gives low p-values for both
X3 and the second variable, select the model with the lowest p-
values. (Suppose it is the one with X; and X;) — GO TO STEP 3.

1.9 Some important issues in multiple
regression

Stepwise Regression (Forward Selection)
= STEP 3: Do all possible 3-variable regressions in which two of the
three variables are X; and X;.

= If none of the 3-variable regressions gives low p-values for each of

X3, X5, and the other variable — STOP — use the model utilizing only
Xz and Xs.

If one or more of the 3-variable models gives low p-values for X,
Xs, and the third variable, select the model with the lowest p-values.
GO TO STEP 4 and continue this process.
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Some important issues in multiple
regression
Example
Here is the printont from a model of ¥ vs. X, X
There is low ngml‘[mm;_r___F. bt 2 of the p-values @
~—
AROVA
Regresss -
Risidual
Totol
7
[E= Loy
958
Intedcegt 1350 67 410634 14
X1
x4
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Step 1: Do 5 L-variable regressions
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Step 2 2-variable regressions with X,

X, and Xy
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Step 3+ 3-variable regressions with X, and X,
X, X, andX,
e
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Other Model Selection Criterion: Adjusted R?

Other Model Selection Criterion: Adjusted R?

= As shown earlier, every time a new covariate is
added, the R?increases.

= One solution: adjust RZto account for the additional
variables.

= Definition of adjusted R?: If there are (p-1)
covariates in the model (i.e., # of parameters =p),
then

adj R?=1— (E) (1-R?)
n—-p

Consider the example discussed earlier. Suppose n=10.
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Some important issues in multiple
regression

Plots of largest R?, Adj R? versus # of Covariates in the model

Max R? Max Adj R?

—

Mau Adj -2

¥t Comnates Hol Comasies
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# of Covariates R? Adj_R?
Covariates
1 X 0.32 0.24
1 X, 0.51 0.45
1 X5 0.42 0.35
2 Xi, X, 0.64 0.54
2 X, Xy 0.72 0.64
2 Xy, X5 0.61 0.50
3 X, Xo, X3 0.74 0.61
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Other Model Selection Criterion: AIC
= Akaike Information Criterion (AIC) is based on
Maximum Likelihood and a penalty for total
number of parameters in the model.
= In multiple regression, the criterion reduces to
SSE
AlIC = nlog o +2p+C
Where p is the number of parameters in the model
and C is a constant.
= Choose model with smallest AIC.
MA 214 48




Other Model Selection Criterion: BIC

Some important issues in multiple
regression

= Schwartz’s Bayesian Information Criterion (BIC) is
similar to AIC, but assigns a greater penalty for larger
models.

» |n multiple regression, the criterion reduces to
SSE
BIC =nlog o + (logn)p + C

Where p is the number of parameters in the model and C
is a constant.

» Choose model with smallest BIC.

Some additional topics in regression

= How to incorporate categorical covariates
in a regression model?
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Some important issues in multiple
regression

Salary

Salaries for Men and Women

& ‘| * Men s *

= J- Women - -

i I i - Scatterplot of the data
2 4 8 a 10

Years Expenence
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Some important issues in multiple
regression
Some additional topics in regression
= Example
The academic advisor continues Y X %
her study on the salaries of recent 50 2 Male
graduates and records several 42 10 Female
additional observatlonsl. In total 55 1 Male
she now has the following data for
16 individuals: 30 8 Female
63 5 Male
Y :Annual income of a graduate.
33 6 Female
X, - Number of years of experience.
X, : Gender of the graduate.
MA 214 51

Some important issues in multiple
regression

Salaries for Men and Women

& <4 pan [ L :
- ™ Wome & =
g ™™ B Simple Linear Regression
sl Yi =B+ BiXi,
o
T T
2 F [ a 0

Years Experience

y, =3.125+48.187x,,

MA 214 53

MA 214 52
Indicator Variable
To incorporate Gender as one of the covariates, define an
Indicator/Dummy variable as follows:
X, = {1 if Male
2710 if Female
Thus if the fitted model is ¥ = Po + B1X1 + B2X;
Then, itimplies
P = {(30*.32) + B Xy if Male
Po + f1X1 if Female
MA 214 54




Some important issues in multiple
regression: Indicator Variable

Salaries for Men and Women

2 s ten g Multiple Linear Regression

; * Wioemen o B =
. i' . Yi =B+ B+ BoXi
§ g 5
&l

gl ¢ | Females(x;, =0):

§ et 3 Yi =B+ BiXi,

2 4 o 8 v Males (xi,1 :1):
Years Expesence

Females y, =—1518+6.1964x, Y =(8,+5,)+ BX,
Males Y, =59.1696 +6.1964x, ,

140 - 0—
1204 e 1—
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L e o

1234856710 0101
YoarsFap

4 Summary of Fit

RSquare 0901317
RSquare Ay 0885135
Fiool Mean Squarn Eirof 1108827
MAan of Responss 66 6875
Dbasevations (or Sum Wats) 16
4 Analysis of Variance
Sum of
semrce Dk Squares Mean Square  F Rabo
Moce 2 14518304 TIETIS  ERIEIS
Emer 12 1560.104 12224 Prob>F
© Total 15 18100438 « 0001
4 Paramatar Estimates
Term [Estemate  Sed Crror 1 Ratio  Progeii|
Intercepl 20500929 7747845 is Doo22*
YearsExp  G1964286 1206338 614 00002 56

Gandednl 29 660712859193 1048 <0001

Indicator Variables

Indicator Variable

= What happens if a categorical covariate assumes
more than two values?
= Suppose the covariate is related to the three areas
the students’ majors, namely: Sci/Math (SM), Social
Science (SS), Humanities (HU).
= We need two Indicator variables:
(1 if SM
X2 = {0 Otherwise

1 if S8

%= [0 Otherwise
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This means:
T T
SM 1 0
ss 0 1
HU 0 0
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Indicator Variables

Thus if the fitted model is
Y =By + 1X1 + PaXa + P3X3

Then, itimplies

~ (Bot+B2) + B Xy if sM
¥ =1 (Bo+P3) + b1X: if 8§
Bo + PrXq if HU
MA 214
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Suppose income group is a covariate that
assumes five levels of income. How many
inclical abl lod?

1.2 25%  25%  25%  25%
2.3
V3.4
4.5
MA 214 2 3 “ 60




Interaction Term

= Frequently, in multiple regression the effect of one
covariate on the response variable may depend on
the value of another covariate. This is called
interaction, and we model an interaction in the
following manner:
Y = Bo + f1Xy + BaXa*f3X1 Xz

= In particular, if X, is an indicator variable (say, =1 if
Male and 0 if Female), then the model implies:

7= {(ﬁoﬂfz) + (Bi+P2)X: if Male

Some important issues in multiple
regression: Interaction Term

Multiple Linear Regression
Yi = Bo+ BiXiy + BoXi o + BaXiiXia
Females(x,, =0):

Yi = By + BiXiy g """J i

Salaries for Men and Women

Lo + Bi1X4 if Female
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Some important issues in multiple
regression
Salaries for Men and Women Salaries for Men and Women
0 il T T
& 4+ Men -
_|® Women s
r— =
3 ®7 . L] =
LA 3
g4 a =
. r 3
2 4 8 o F N & 8 10
Yeurs Experience Yoirs Experivnce
Without interaction term With interaction term
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0 B
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123456710 2101 123456067885 W0N
YearsEap Yaarsap
4 Summary of Fit « Summary of Fit
RSquars 0901217
RSquare A4 0885135
Root lean Square Error 1108827
Mean of Response 666875
Dbasrvations (or Sum Watsh 16
4 Analysis of Variance 4 Analysls of
Summ of
Sowrce o Sguares  Mean Sguarne ¥ Ravo
Moaded 2 14514304 TS5 5RETS
Emor 17 1500404 12224 PronsE
€ Total 15 16100430 <0001
4 Paramater Estimates
Esumate Sl Emor  (Raso Progem
Term Estmate SedCrror tRatio Prodeii| n 2835 984 <0001 |}
Intercepl 29500920 TT4TBAS  AB1 00022 2 e .
YearsExp B1964786 1206338 814 00002 & 04gmes 1248 <0001
Gendern] 28 66071 2 8269113 1048 <0001 Eapd 250408 N 4aTqse A3 001,

Males (xiy1 :1): Fel <
Yi :(ﬂ0+ﬂz)+(ﬁ1+ﬂ3)xi,l :}“ £
Femalesy, =22.524+2.381x, | . . . .
Males Y, = 42.643+9.679x,,
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Some important issues in multiple
regression
Comparison of Models R?
Yi =By + BiXis 0.06694
Yi = Bo+ BiXiy + BoXia 0.9013
Yi = Bo+ Xy BoXio + BaXiaXi 0.9845
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Nonlinear regression
= Polynomial regression of order 2 (second order
model with one covariate)
Yi =5 +181(Xi - X)"’:Bz(xi - X)2 +&,i=12,..,n
= This can be viewed as a multiple regression model
with two covariates
X, =(X-X)and X, =(X - X)
MA 214 66




Nonlinear regression

= Example: Use a quadratic model to fit the occupancy limit of a

building (y) by its length (x).

4 = Bivariate Fit of y By x

4 = Bivariate Fit of y By x

*—Poymamial Fit Degress
4 Pelynomial Fit Degree=2

st ¥= 1THT B4 » 1BEOZ20E » 2 THAT 44720 BETSPT
2000 4 Summary of Fit
Requan 0851661
2500 Rfiquars Ad) 067830
Root Mean Square Error 185211
= 2000 Mian of Response 1782688
1500 Obsanalions (or Sum Watsh 16
4 Analysis of Variance
1000 Sum ol
- Somce DF  Squares MeonSquae  F Ratio
o 8 0 25 S Model I 1T0IET1A 3651236 2470200
X Errar 13 143801 5 11068  Prob>F
., Total 15 TR4BSTLA «0001*
*—Patmorial Fit Degrass 1 . Parameter Estimatas
Tem Cstimate  SidDiror  tRatle Prebeg|
Insereapt 1767 642 137317 1280 <000~
MA 16802188 BITETIS 2634 <0001
(20697542 ATESTHA 1046070 130 00058




