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MA 214: Applied Statistics

Instructor: Ashis Gangopadhyay

ANOVA

Part I
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Where We’ve Been

We were discussing….

 How to develop statistical models where the 

response variable Y is continuous and 

covariates are (mostly) continuous.
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Where We’re Going

 We want consider the scenarios where  the 

response variable is still continuous, but all

of the covariates are categorical. 
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Analysis of Variance

 Recall that a statistical model is selected on the 

basis of the characteristics of the dependent 

variable and the covariates as follows:

Continuous Nominal

Continuous Regression Logistic Regression

Nominal ANOVA Categorical Data Analysis
Covariates

Dependent Variable
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Analysis of Variance

 This suggests that an Analysis of Variance 

(ANOVA) model is appropriate when the dependent 

variable Y is continuous, but all covariates (or 

factors) in the model are nominal (categorical).

Continuous Nominal

Continuous Regression Logistic Regression

Nominal ANOVA Categorical Data Analysis
Covariates

Dependent Variable
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Analysis of Variance

 Example 1: A study was conducted to compare 

between three different techniques to lower blood 

pressure level of patients suffering from high blood 

pressure. 15 subjects were randomly assigned to one of 

three groups; and after four weeks, their reductions in 

blood pressure level were recorded.
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Some definitions

 Factor: Covariates included in the experiment.

In Example 1, the treatment method is the factor.
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Clicker Question:

 Suppose in a market research, questionnaires are 

printed on papers of various colors (say, white, blue, red 

and pink) and the objective is to study the effect of the 

differences of the paper on the rate of response. 

 What is factor in this study?
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Factor in the study is

1 2 3 4

25% 25%25%25%1. Survey 
respondents.

2. Questions listed in 
the questionnaire.

3. Color of the paper.

4. Number of 
respondents.
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Some definitions

 Factor Level: Specific forms of factor used in the 

experiment.

In Example 1, it is the three forms of treatment methods; 

namely medication, exercise and diet, are the factor 

levels.
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Some definitions

 Factor Level: Specific forms of factor used in the 

experiment.

In the questionnaire example, the specific colors of the 

papers on which the questionnaires are printed are the 

factor levels.
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Some definitions

 Treatment: Combinations of factor levels are called 

treatments. In one factor ANOVA, the factor levels are 

the treatments. In multifactor ANOVA, specific 

combinations of factor levels from various factors are the 

treatments.
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Some definitions

 In the BP example, suppose we wish to study the effect 

of two factors on the blood pressure level. The two 

factors are: method (with factor levels exercise, 

medication, and diet) and age (with factor levels young, 

middle-aged, and older). 

In this case, there are nine treatments:

1. exercise, young

2. exercise, middle-aged

3. exercise, older

4. medication, young

5. medication, middle-aged

6. medication, older

7. diet, young

8. diet, middle-aged

9. diet, older
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Suppose a study was conducted to investigate the 
effects of education level (High School, College,  Post-
Graduate) and Gender of the person on his/her annual 
income.  The number of treatments is:

1 2 3 4

25% 25%25%25%1. 2

2. 3

3. 5

4. 6
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Some definitions

 Replications: Number of observations within each 

treatment.

In the BP example, the number of replications for all 

treatments is five.
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Some definitions

 An ANOVA is called balanced, if the number of 

replications in all treatments are equal, otherwise the 

ANOVA is called unbalanced.
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If an ANOVA is balanced, then…

1 2 3 4

25% 25%25%25%
1. All factors have equal 

number of factor levels.

2. Number of factor levels 
must be even.

3. All treatments have equal 
number of observations.

4. All treatments have 
unequal number of 
observations.
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One factor (one-way) ANOVA

 Consider an experiment in which only one factor at k-

levels is being studied. The general data structure is of 

the form:
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One factor (one-way) ANOVA

 It is often useful to look at a graphical representation of 

the data, such as a side-by-side boxplot to get a better 

understanding of the differences between the 

observations in various factor levels.
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One factor (one-way) ANOVA

 We assume the following statistical model that describes 

the data:

where the random error term      is assumed to be 

independent and normally distributed with mean 0 and 

variance     .

iijiij njkiy  ,... ,2 ,1 ; ..., ,2 ,1 ,  

ij

2

MA 214
21

One factor (one-way) ANOVA

 Note: the implication of the model is that the 

observations in the ith factor level describe a random 

sample of size ni from a normal population with mean 

and variance       , for i = 1, 2, …, k.

 In other words, we have k independent samples from k

normal populations with mean      and a common 

variance     .

i 2

i
2
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One factor ANOVA model

1 2 3

Population 1 Population 2 Population 3

Normal distributions with different means but constant variance
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Suppose we wish to test a hypothesis that 
all three populations are identical. Then 
the null and alternative hypotheses are…

1.

2.

3.

4.

1 2 3 4

25% 25%25%25%
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One factor (one-way) ANOVA

 Thus, it is useful to note that one factor ANOVA model is 

a generalization of two-sample inference that we studied 

earlier in the course.

 One-factor ANOVA is often described as k-sample 

inference.
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Objectives of one-factor ANOVA

 First objective is to verify whether the factor levels 

(treatments) have any effect on the response variable. 

This is done by testing the following hypothesis:

 Note that the null hypothesis states that the mean effect 

of all treatments are equal, and no treatment is better 

than the others; whereas the alternative hypothesis 

states that there is a statistically significant difference 

between the effects of treatments.

equal. are s' allNot  :

...: 210
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
 
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Objectives of one-factor ANOVA

 If we reject the null hypothesis, then we need to find the 

“best” treatment, or the best group of treatments.

 For this purpose, we use pairwise comparison 

techniques.
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Which of the following is a necessary 
assumption to conduct a one-way ANOVA 
comparing k population means?

1 2 3 4

25% 25%25%25%
1. The k populations of values of 

the response variable 
associated with the treatments 
have equal variances.

2. The k populations of values of 
the response variable 
associated with the treatments 
all have normal distributions.

3. The samples of experimental 
units associated with the 
treatments are randomly 
selected, independent samples.

4. All of the above.

MA 214
28

Some useful notations
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ANOVA for one-factor model

 We use the analysis of variance approach that we 

developed in regression. So the basic idea is to consider 

the variability of the observations on the dependent 

variable y, and then figure out how much of that 

variability can be explained by the factor in the model.
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ANOVA for one-factor model

 First, we ignore the fact that the observations are 

associated with different factor levels. The overall 

(baseline) variability of the observations on the response 

variable Y is given by:

   
1 1
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ANOVA for one-factor model

 Now, we take into consideration the fact that 

observations are actually related to different factor 

levels, with possibly different mean effects. This leads to 

a revised measure of variability given by:

   
1 1

2  


k

i

n

j iij
i yySSE
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ANOVA for one-factor model

 Thus, reduction in variability by the taking into effect of 

treatments is given by the Treatment Sum of Squares:

 As we have seen in regression, SSTR measures the 

part of the overall variability explained by the factor.

   
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ANOVA for one-factor model

 Computational formulas:

 
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ANOVA for one-factor model

 ANOVA for one-factor model

Source SS DF MS F

Treatment SSTR k – 1 MSTR F = 

Error SSE n – k MSE

Total SSTO n – 1

MSE

MSTR
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Interpretation of ANOVA

 R2 (coefficient of determination)

 F-test

SSTO

SSTR
R 2 (Proportion of the total variability 

explained by the factor)

equal. are s' allNot  :

...: 210

ia

k

H

H


  Reject H0 if F > Fα

(Fα is based on (k – 1, n – k) 
degrees of freedom).
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Interpretation of ANOVA

 Example:

15 ,5321  nnnn
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Interpretation of ANOVA

 Example: 73.245
15

112
1082

2

SSTO

      2
33

2
22

2
11 111 snsnsnSSE 

4.827.442.1047.54 SSE

33.1634.8273.245 SSTR

Source SS DF MS F

Treatment 163.33 2 81.66 F = 11.88

Error 82.4 12 6.87

Total 245.73 14
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Interpretation of ANOVA

 Thus                                    , that is, 66% of the 

variability of the reduction in the BP level is explained by 

the treatment.

 Now, we wish to test the hypothesis:

66.0
73.245

33.1632 R

equal. are s' allNot  :

: 3210

iaH

H


  Reject H0 if F > F0.05

(F0.05 = 3.89 using (2, 12) df).
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Interpretation of ANOVA

 Since F = 11.88, we reject H0 and conclude that 

treatments have statistically significant effect on the 

blood pressure level.

 Now that we have concluded that all treatments are not 

the same, how do we identify the “best” treatment(s)?
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Pairwise comparison (multiple 
comparison) procedure

 If we have rejected the null hypothesis in ANOVA F-test, 

then we may wish to explore the relationship between 

specific subsets of treatments. In particular, one can 

consider a procedure in which all possible distinct pairs 

of treatments are compared, which can lead to 

identification of the “best” treatment, or the best group of 

treatments.
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Pairwise comparison (multiple 
comparison) procedure

 Multiple comparison procedures are extremely useful in 

statistics, and there are several such techniques. Here is 

a list of some of the most common procedures:

 Tukey multiple comparison

 Bonferroni

 Scheffe’

 SNK

… among many others.

 In this course we will discuss the Tukey procedure in 

detail.
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Tukey multiple comparison procedure

 In Tukey multiple comparison procedure, we try to 

identify the best treatment (or group of treatments) by 

comparing all possible pairs of treatment means. Thus 

the objective is to test the hypothesis:

 Note that Ha states that there is a statistically significant 

difference between the ith and jth treatments. Thus the 

Tukey multiple comparison procedure for k-means 

involves

jiaji HH    :       versus:0

.many tests  2)1(2  kkCk
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Tukey multiple comparison procedure

 However, the problem is that for each of these tests, 

there is a small probability α that the inference is 

incorrect (type I error), which can accumulate to a 

“large” probability of an incorrect decision when we 

combine the inferences based on these individual 

hypothesis testing procedures.

 P(at least one of the inferences is incorrect)

= 1 – P(none of the inferences is incorrect)

= 1 – (1 – α)m

Suppose our inferences is based on m hypothesis testing 
procedures each with type I error α. Then
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Tukey multiple comparison procedure

 Example: If our inference is based on 6 hypothesis 

testing procedures, each with probability of type I error 

0.05, then the probability of making an incorrect 

inference is roughly 1 – 0.956 ≈ 0.2649, which is 

unacceptably high!

 This is why the hypothesis H0: μi = μj is evaluated by 

constructing simultaneous confidence intervals for the 

difference (μi – μj) with family confidence coefficient 

(1 – α).
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Tukey multiple comparison procedure

 Family Confidence Coefficient: A family confidence 

coefficient is defined as the proportion of correct families 

of estimates when repeated samples are selected and 

specified confidence intervals for the entire family are 

calculated for each sample.

MA 214
46

1.2.3 Tukey multiple comparison 
procedure

 Step 1: Construct Tukey confidence intervals for all 

distinct pairwise differences (μi – μj) with family 

confidence coefficient (1 – α) as follows:

where                     , and       is the (1 – α) percentile of 

the studentized range distribution with df (k, n – k). Note 

that the tables for percentiles of this distribution are 

available in your book.

Steps for Tukey multiple comparison:

 
ji

ji nn

q
yy

11
ˆ

2
 

MSE̂ q

MA 214

Suppose we carry out pairwise 
comparisons between 5 treatment means. 
The numeber of Tukey CI is:

1 2 3 4

25% 25%25%25%1. 5

2. 10

3. 15

4. None of the above
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1.2.3 Tukey multiple comparison 
procedure

 Step 2: Accept H0 if zero is included in the interval, and 

conclude that the difference between the means is not 

statistically significant. Otherwise, conclude that the 

difference is significant.

Steps for Tukey multiple comparison:
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1.2.3 Tukey multiple comparison 
procedure

 Example: We wish to construct 95% Tukey confidence 

intervals for all pairwise comparisons.

From table: q0.05 = 3.77 based on (k = 3, n – k = 12) df.

Medication vs. Exercise  0: 210  H

 :for  interval confidence %95 21  

 
21

05.0
21

11
ˆ

2 nn

q
yy  

62.287.6ˆ 
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1.2.3 Tukey multiple comparison 
procedure

42.4
5

1

5

1
62.2

2

77.311
ˆ

2 21

05.0 
nn

q 

)42.12 ,58.3(42.4)8.38.11( 

Thus the difference is statistically significant.
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Tukey multiple comparison procedure

 Example (cont’d): We wish to construct 95% Tukey 

confidence intervals for all pairwise comparisons.

From table: q0.05 = 3.77 based on (k = 3, n – k = 12) df.

Medication vs. Diet  0: 310  H

 :for  interval confidence %95 31  

 
31

05.0
31

11
ˆ

2 nn

q
yy  

62.287.6ˆ 
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Tukey multiple comparison procedure

42.4
5

1

5

1
62.2

2

77.311
ˆ

2 31

05.0 
nn

q 

)42.9 ,58.0(42.4)8.68.11( 

Thus the difference is statistically significant.
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Tukey multiple comparison procedure

 Example (cont’d): We wish to construct 95% Tukey 

confidence intervals for all pairwise comparisons.

From table: q0.05 = 3.77 based on (k = 3, n – k = 12) df.

Exercise vs. Diet  0: 320  H

 :for  interval confidence %95 32  

 
32

05.0
32

11
ˆ

2 nn

q
yy  

62.287.6ˆ 
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Tukey multiple comparison procedure

42.4
5

1

5

1
62.2

2

77.311
ˆ

2 32

05.0 
nn

q 

)42.1,42.7(42.4)8.68.3( 

Thus the difference is NOT statistically significant.
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Tukey multiple comparison procedure

 Presentation of the results: Arrange the treatments in 

the increasing order of their means, and identify pair of 

treatments that are not significantly different by joining 

them with lines below the treatments.

Exercise Diet MedicationExercise

3.8 6.8 11.8

----------------------------
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Tukey multiple comparison procedure

 This leads to the Tukey groups {Exercise, Diet} and 

{Medication}. Thus in this context, since the higher 

average corresponds to better treatment effect, 

Medication is the best treatment, while Diet and Exercise 

are statistically equivalent.

Exercise Diet MedicationExercise

3.8 6.8 11.8

----------------------------
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Tukey multiple comparison procedure

 It should be noted that the Tukey procedure controls the 

probability of the type I error well, but there are other 

tests (such as SNK, REGWQ, etc) that are more efficient 

than Tukey particularly when the sample sizes in each 

factor level are unequal, and should be considered while 

analyzing the data using a statistical software.


