

Some de	Some definitions							
Factor: Co	variates i	nclud	ed in	the	expe	eriment.		
In Example	In Example 1, the treatment method is the factor.							
N	Method	Reduction in BP level						
N	Medication	10	12	9	15	13		
E	Exercise	6	8	3	0	2		
	Diet	5	9	8	8	4		
	MA 214						7	

of all treatments are equal, and no treatment is better than the others; whereas the alternative hypothesis states that there is a statistically significant difference between the effects of treatments.

MA 214

25

ANOVA f	or one-fac	tor model			
Source	SS	DF	MS	F]
Treatment	SSTR	k – 1	MSTR	$F = \frac{MSTR}{MSE}$	
Error	SSE	n – k	MSE		
Total	SSTO	n – 1			

Interpretation of ANOVA									
Example	Example:								
Method	Re	ducti	on in	BP le	evel	Total	Average	Variance	
Medication	10	12	9	15	13	59	11.8	5.7	
Exercise	6	8	3	0	2	19	3.8	10.2	
Diet	5	9	8	8	4	38	6.8	4.7	
Thus: $n_1 = n_2 = n_3$ $s_1^2 = 5.7, s_2^2$ $\overline{y}_1 = 11.8, \overline{y}_2$	Thus: $n_1 = n_2 = n_3 = 5, n = 15$ $s_1^2 = 5.7, s_2^2 = 10.2, s_3^2 = 4.7$ $\overline{y}_1 = 11.8, \overline{y}_2 = 3.8, \overline{y}_3 = 6.8$ $\overline{Y} = \frac{112}{15} = 7.47$								
					MA 21	4		36	

Interpretation of ANOVA								
•	• Example: $SSTO = 1082 - \frac{112^2}{15} = 245.73$ $SSE = (n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + (n_3 - 1)s_3^2$ $SSE = 4 \times 5.7 + 4 \times 10.2 + 4 \times 4.7 = 82.4$ SSTR = 245.73 - 82.4 = 163.33							
	Source SS DF MS F							
	Treatment	163.33	2	81.66	F = 11.88			
	Error	82.4	12	6.87				
	Total	245.73	14					
MA 214								

Example: If our inference is based on 6 hypothesis testing procedures, each with probability of type I error 0.05, then the probability of making an incorrect

- This is why the hypothesis H₀: μ_i = μ_i is evaluated by
- This is why the hypothesis H_0 : $\mu_i = \mu_i$ is evaluated by constructing simultaneous confidence intervals for the difference $(\mu_i \mu_j)$ with *family confidence coefficient* (1α) .

MA 214

44

1.2.3 Tukey multiple comparison
procedure
• Example: We wish to construct 95% Tukey confidence intervals for all pairwise comparisons.
Medication vs. Exercise
$$(H_0: \mu_1 - \mu_2 = 0)$$

95% confidence interval for $(\mu_1 - \mu_2)$:
 $(\bar{y}_1 - \bar{y}_2) \pm \frac{q_{0.05}}{\sqrt{2}} \hat{\sigma} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
From table: $q_{0.05} = 3.77$ based on $(k = 3, n - k = 12)$ df.
 $\hat{\sigma} = \sqrt{6.87} = 2.62$
MA 214

1.2.3 Tukey multiple comparison
procedure
$$\frac{q_{0.05}}{\sqrt{2}} \hat{\sigma} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = \frac{3.77}{\sqrt{2}} \times 2.62 \times \sqrt{\frac{1}{5} + \frac{1}{5}} = 4.42$$
$$(11.8 - 3.8) \pm 4.42 = (3.58, 12.42)$$
Thus the difference is statistically significant.

$$q_{0.05}$$
 $\hat{\sigma}\sqrt{\frac{1}{n_1} + \frac{1}{n_3}} = \frac{3.77}{\sqrt{2}} \times 2.62 \times \sqrt{\frac{1}{5} + \frac{1}{5}} = 4.42$
 $(11.8 - 6.8) \pm 4.42 = (0.58, 9.42)$

 Thus the difference is statistically significant.

Tukey multiple comparison procedure
• Example (cont'd): We wish to construct 95% Tukey
confidence intervals for all pairwise comparisons.
Exercise vs. Diet
$$(H_0 : \mu_2 - \mu_3 = 0)$$

95% confidence interval for $(\mu_2 - \mu_3)$:
 $(\overline{y}_2 - \overline{y}_3) \pm \frac{q_{0.05}}{\sqrt{2}} \hat{\sigma} \sqrt{\frac{1}{n_2} + \frac{1}{n_3}}$
From table: $q_{0.05} = 3.77$ based on $(k = 3, n - k = 12)$ df.
 $\hat{\sigma} = \sqrt{6.87} = 2.62$
MA214

6.8		
Dist	11.8 Madiaatian	
	 	MA 214

Tukey multiple comparison procedure	
It should be noted that the Tukey procedure controls the probability of the type I error well, but there are other tests (such as SNK, REGWQ, etc) that are more efficient than Tukey particularly when the sample sizes in each factor level are unequal, and should be considered while analyzing the data using a statistical software.	
MA 214 5	7