PO 399

Lecture 1

Instructor: Ahyoung Cho

Department of Political Science

Summer 2024

DATA SCIENCE FOR POLITICS

- Lots of hard political/policy problems in the world today
- Lots of data in the world today
- Problem: methods/approaches to data primarily built for engineering
 - Politics is not like engineering!
- Solution: combine data science skills with social science reasoning

GOALS OF THIS COURSE

- Develop technical skills
 - Programming
 - Probability/Statistics/Inference
- Combine these skills with social science thinking
 - Data and statistics are not a substitute for *thinking*.
 - Why do experts frequently make mistakes understanding data and statistics?
- Provide a framework for thinking about data and analysis
 - Correlation
 - Measurement
 - Causality
 - Prediction
 - Visualization

POLITICS AND DATA GO TOGETHER

- Political campaigns
- Political journalism
- Academic research
- Tech firms/startups
- Policy/government relations
- DC think tanks/non-profits
- Advocacy groups
- Social media, public relations
- Consulting and finance

WE'LL ANSWER IMPORTANT POLITICAL QUESTIONS

- As political scientists, we want to answer big questions about politics.
 - How can we measure ideology and predict voting in Congress?
 - How do assassinations affect national politics?
 - Can we predict presidential elections?
 - How does encouraging more women to run for office affect local politics?
 - Are peaceful protests more effective than violent protests?
 - Does broken windows policing work?

LEARNING GOALS

At the end of this course, students should:

- 1. Be comfortable using basic features of the R programming language.
- 2. Be able to combine political data with statistical concepts to answer political questions.
- 3. Know how to create visual depictions of statistical patterns in data.

SPECIFIC SKILLS WE'LL LEARN

We'll learn how to...

- Use and understand political data
- Link political questions to statistical solutions
- Write R code
- Import, clean, and manipulate data
- Calculate statistical quantities of interest
- Assess our confidence in these quantities
- Visualize data
- Be an informed consumer of statistical evidence

WHY WE'RE USING R

- It's relatively quick to learn the basics for data science
- It's FREE and open-source
- It's flexible
- R is also a full programming language; once you understand how to use it, you can learn other languages too.

HOW TO LEARN R: BE ACTIVE

- Traditional lecture approach bad for learning code
- You can only learn by doing
 - Lectures will introduce material and give you opportunities to practice.
- Programming takes practice.

LEARNING HOW TO PROGRAM

- Learning to program is like learning a language:
 - Vocabulary
 - Syntax
 - Grammar
 - Style
- There are many ways to do the same thing.
 - Not just one right answer.
 - Many different ways of communicating the same statement.

SYLLABUS / GRADING

Syllabus

- Course website: Blackboard
- Office hours
 - Mondays and Wednesdays, 12:15 PM
 1:15 PM
 - Schedule other times via email
- Full syllabus on Blackboard. Read it!.

Grading

- Problem Sets (40%): Four problem sets. You can collaborate, but your submitted code and written answers must be your own.
- Take-home Midterm Exam (20%)
- Final Projects (35%)
 - Analyze a data set and present findings on a poster.
 - Work in pairs or on your own.
- Attendance and Participation (5%)

BOOKS

• Bueno de Mesquita, Ethan and Anthony Fowler. *Thinking Clearly With Data*. Princeton University Press, 2021.

BOOKS

Hadley Wickham & Garrett Grolemund

- Grolemund, Garrett and Hadley Wickham. *R for Data Science*. O'Reilly, 2017.
 - This book is free online at https://r4ds.had.co.nz/.

BOOKS

- Healy, Kieran. *Data Visualization: A practical introduction*. Princeton University Press, 2018.
 - This book is free online at https://socviz.co/.

OPTIONAL BOOK

- Imai, Kosuke. *Quantitative Social Science: An Introduction*, Princeton University Press, 2017.
 - There is also a new version, Quantitative Social Science: An Introduction in Tidyverse. Use this if possible.

HOW TO SUCCEED THIS COURSE

- This is a course for students with a wide range of backgrounds.
- You are not expected to know any programming or data analysis skills.
 - We will start on Friday with some basics of programming.
 - If you have programming experience, focus on mastering the analysis components and challenging yourself with more advanced topics.
- Success requires time and effort.
 - Learning new skills, language, and ways of thinking are not easy.
 - You will need to practice, beyond the course homework.
 - Textbooks include practice software and problems.
 - Google to answer programming questions.
 - R has great online resources and a very helpful community.
- Don't wait to ask for help.

TAKE THE FIRST CLASS SURVEY

• Take the first class survey (link)

INSTALL R AND R STUDIO

- 1. Install R (https://cran.r-project.org/)
- 2. Install RStudio (https://rstudio.com/products/rstudio/download/)

TODAY

- Using R Studio
- Lab Session
- Practice Problems

RSTUDIO

- RStudio is an IDE (integrated development environment).
- It includes all the tools you need to work in R.
 - Write code.
 - Run code and see results.
 - Create, load and save objects.
 - Make graphs and see them.
 - Search help files.
 - ... and a lot more.

USING R AS A CALCULATOR

2+3

[1] 5

order of operations is observed: 3*9+2

[1] 29

•
<pre># spaces don't matter: 2 + 3</pre>
[1] 5
4* 5
[1] 20
(4^3+(3*5-9))/2
[1] 35

creates comments: notes in your code that are *not* run.

BASIC OPERATIONS

Use
Assign value to object
Test equality
Test not equal
And
Or
Not

x <- 1 y <- 2

x == 1

[1] TRUE

	\wedge
x == 2	PO 399
## [1] FALSE	
x != 3	
## [1] TRUE	
x + y == 3	
## [1] TRUE	
x==1 & y==2	
## [1] TRUE	
x==1 y==4	
## [1] TRUE	

OBJECTS

< - assigns values to a named object.

my_variable <- 5</pre>

another_variable <- "Max"</pre>

third_var <- TRUE</pre>

Objects are saved and can be referenced and modified.

my_variable + 3

[1] 8

another_variable == "John"

[1] FALSE

OBJECTS

- Many ways to name variables.
 - o snake_case_uses_underscores
 - o camelCaseUsesCapitalLetters
 - o you.can.also.use.periods
 - o thisisreallyhardtoread
 - o thisIs_also.hardTOREAD
- Choose a system and be consistent.

- Variable names must be *exact*:
 - Case sensitive
 - Identical punctuation
 - **my_variable** and **my_Variable** are two different objects.
 - If you get an error like this, check that the variable name is correct:

my.var
Error: object 'my.var' not found

OBJECT TYPES

- Numbers:
 - Integers: 1, 2, 10456
 - Doubles: 1.2, 3.99, -15.75769567
- Strings / characters:
 - Enclosed in single or double quotes.
 - "Joe Biden", 'Bernie Sanders'
 - Numbers in quotes are treated as strings:

- Booleans:
 - Object that can only have the value **TRUE** or **FALSE**.
 - Can be abbreviated to T or F.
- Groups of Objects:
 - The function **c()** creates vectors and lists:
 - Vectors are sets of the same data type.
 - Lists may have different types.

my_vector <- c(1, 2, 3, 4, 5)</pre>

PREPARING OBJECTS

- If you type the name of an object, R will print a version of it in the console.
- Simple objects (numbers, strings, lists...) will be printed.
- More complex objects may be printed differently (models.)

x <- "ABC" x = "ABC" ## [1] "ABC" my_vector ## [1] 1 2 3 4 5

FUNCTIONS

- Functions are blocks of code that do something.
- This function prints the alphabet:

```
print_alpha <- function() {
    print("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
}</pre>
```

```
print_alpha()
```

[1] "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

- Functions often take arguments, which we list as variable names in the parentheses that follow the function name.
- The function then uses those arguments.
- Functions also *return* an object, which can be saved.

```
geometric_mean <- function(x1, x2) {
   y <- sqrt(x1*x2)
   return(y)
}</pre>
```

```
geometric_mean(5, 10)
```

```
## [1] 7.071068
```


FUNCTIONS

- R has many built in functions.
- Packages will add more functions.
- And we can also write our own functions.
 - We can use functions to save time.
 - Instead of writing the same code to do the same thing multiple times, write one function and then call it multiple times.

- Some uses of functions:
 - Create objects
 - Complex calculations
- Statistical models
- Graphs & Maps
- Generate output (e.g. tables)

FUNCTIONS

- Some useful starter functions:
 - c()
 - o length()&dim()
 - o seq()&rep()
 - o sum(),mean()
 - o min(), max()

<pre>sum(1, 2, 4, 5) # Adds numbers</pre>
[1] 12
<pre>seq(1, 10) # Sequence of numbers</pre>
[1] 1 2 3 4 5 6 7 8 9 10
<pre>seq(0, 10, 2) # Count by last argument</pre>
[1] 0 2 4 6 8 10
c("A", "B", "C") # Create a list or ver
[1] "A" "B" "C"

PO 399

PACKAGES

- Packages extend R by adding new functionality.
- Install package with the code install.packages("package_name")
- After installing, load a package with library(package_name)

PACKAGES

PO 399

- Tidyverse
 - A set of packages that make it easy to load, clean, and manipulate data.
 - Includes **ggplot**, a package for making graphs.
 - There are many other packages that do similar things.
 - We will use **tidyverse** because the syntax is relatively simple and readable.
 - There are faster options for more complex problems.

INSTALLING TIDYVERSE

• Install the **tidyverse** packages:

```
install.packages("tidyverse")
library(tidyverse)
```

Result should look like this:

> library(tidyvers	e)
— Attaching packa	ges ————————————————————————————————————
✓ ggplot2 3.3.6	✓ purrr 0.3.4
✓ tibble 3.1.7	✓ dplyr 1.0.9
✓ tidyr 1.2.0	✓ stringr 1.4.0
✓ readr 2.1.2	✓ forcats 0.5.1
— Conflicts ———	<pre> tidyverse_conflicts() —</pre>
<pre>* dplyr::filter()</pre>	<pre>masks stats::filter()</pre>
<pre>x dplyr::lag()</pre>	<pre>masks stats::lag()</pre>

- If you get an error:
 - Does it mention the stringi package?

install.packages("stringi")
install.packages("tidyverse")
library(tidyverse)

• Something else?

GETTING HELP

• You can search the R help files by typing ? and a function name.

?sum

- The help files tell you what a function does, how to use it, and it's arguments.
- Help files often include sample code, which you can use to learn how a function works and then modify.

GRAPHS

```
PO 399
```

35/35

```
library(tidyverse)
ggplot(mpg, aes(x=displ, y=hwy, color = class)) +
  geom_point()
```

