
PO 399

Lecture 1

Instructor: Ahyoung Cho

Department of Political Science

Summer 2024

DATA SCIENCE FOR POLITICS

Lots of hard political/policy problems in the world today

Lots of data in the world today

Problem: methods/approaches to data primarily built for engineering

Politics is not like engineering!

Solution: combine data science skills with social science reasoning

2 / 35

GOALS OF THIS COURSE

Develop technical skills

Programming
Probability/Statistics/Inference

Combine these skills with social science thinking

Data and statistics are not a substitute for thinking.
Why do experts frequently make mistakes understanding data and statistics?

Provide a framework for thinking about data and analysis

Correlation
Measurement
Causality
Prediction
Visualization

3 / 35

POLITICS AND DATA GO TOGETHER

Political campaigns

Political journalism

Academic research

Tech firms/startups

Policy/government relations

DC think tanks/non-profits

Advocacy groups

Social media, public relations

Consulting and finance

...

4 / 35

WE'LL ANSWER IMPORTANT POLITICAL QUESTIONS

As political scientists, we want to answer big questions about politics.

How can we measure ideology and predict voting in Congress?

How do assassinations affect national politics?

Can we predict presidential elections?

How does encouraging more women to run for office affect local politics?

Are peaceful protests more effective than violent protests?

Does broken windows policing work?

5 / 35

LEARNING GOALS

At the end of this course, students should:

1. Be comfortable using basic features of the R programming language.

2. Be able to combine political data with statistical concepts to answer political questions.

3. Know how to create visual depictions of statistical patterns in data.

6 / 35

SPECIFIC SKILLS WE'LL LEARN

We'll learn how to...

Use and understand political data

Link political questions to statistical solutions

Write R code

Import, clean, and manipulate data

Calculate statistical quantities of interest

Assess our confidence in these quantities

Visualize data

Be an informed consumer of statistical evidence

7 / 35

WHY WE'RE USING R

It's relatively quick to learn the basics for data science

It's FREE and open-source

It's flexible

R is also a full programming language; once you understand how to use it, you can
learn other languages too.

8 / 35

HOW TO LEARN R: BE ACTIVE

Traditional lecture approach bad for learning code

You can only learn by doing

Lectures will introduce material and give you opportunities to practice.

Programming takes practice.

9 / 35

LEARNING HOW TO PROGRAM

Learning to program is like learning a language:

Vocabulary
Syntax
Grammar
Style

There are many ways to do the same thing.

Not just one right answer.

Many different ways of communicating the same statement.

10 / 35

Syllabus

Course website: Blackboard

Office hours

Mondays and Wednesdays, 12:15 PM
- 1:15 PM
Schedule other times via email

Full syllabus on Blackboard. Read it!.

Grading

Problem Sets (40%): Four problem sets.
You can collaborate, but your
submitted code and written answers
must be your own.

Take-home Midterm Exam (20%)

Final Projects (35%)

Analyze a data set and present
findings on a poster.
Work in pairs or on your own.

Attendance and Participation (5%)

SYLLABUS / GRADING

11 / 35

Bueno de Mesquita, Ethan and
Anthony Fowler. Thinking Clearly With
Data. Princeton University Press, 2021.

BOOKS

12 / 35

Grolemund, Garrett and Hadley
Wickham. R for Data Science. O'Reilly,
2017.

This book is free online at
https://r4ds.had.co.nz/.

BOOKS

13 / 35

https://r4ds.had.co.nz/
https://r4ds.had.co.nz/

Healy, Kieran. Data Visualization: A
practical introduction. Princeton
University Press, 2018.

This book is free online at
https://socviz.co/.

BOOKS

14 / 35

https://socviz.co/
https://socviz.co/
https://socviz.co/

Imai, Kosuke. Quantitative Social
Science: An Introduction, Princeton
University Press, 2017.

There is also a new version,
Quantitative Social Science: An
Introduction in Tidyverse. Use this if
possible.

OPTIONAL BOOK

15 / 35

https://www.amazon.com/Quantitative-Social-Science-Kosuke-Imai/dp/0691175462
https://www.amazon.com/Quantitative-Social-Science-Kosuke-Imai/dp/0691175462

HOW TO SUCCEED THIS COURSE

This is a course for students with a wide range of backgrounds.

You are not expected to know any programming or data analysis skills.

We will start on Friday with some basics of programming.

If you have programming experience, focus on mastering the analysis components
and challenging yourself with more advanced topics.

Success requires time and effort.

Learning new skills, language, and ways of thinking are not easy.
You will need to practice, beyond the course homework.
Textbooks include practice software and problems.
Google to answer programming questions.
R has great online resources and a very helpful community.

Don't wait to ask for help.

16 / 35

TAKE THE FIRST CLASS SURVEY

Take the first class survey (link)

17 / 35

https://bostonu.qualtrics.com/jfe/form/SV_b1vZl2VxZQWFPka

INSTALL R AND R STUDIO

1. Install R (https://cran.r-project.org/)

2. Install RStudio (https://rstudio.com/products/rstudio/download/)

18 / 35

https://cran.r-project.org/
https://rstudio.com/products/rstudio/download/

TODAY

Using R Studio

Lab Session

Practice Problems

19 / 35

RSTUDIO

RStudio is an IDE (integrated development environment).

It includes all the tools you need to work in R.

Write code.

Run code and see results.

Create, load and save objects.

Make graphs and see them.

Search help files.

... and a lot more.

20 / 35

21 / 35

2+3

[1] 5

order of operations is observed:
3*9+2

[1] 29

spaces don't matter:
2 + 3

[1] 5

4* 5

[1] 20

(4^3+(3*5-9))/2

[1] 35

USING R AS A CALCULATOR

creates comments: notes in your code that are not run.

22 / 35

BASIC OPERATIONS

Symbol Use

<- Assign value to object

== Test equality

!= Test not equal

& And

| Or

! Not

x <- 1
y <- 2

x == 1

[1] TRUE

x == 2

[1] FALSE

x != 3

[1] TRUE

x + y == 3

[1] TRUE

x==1 & y==2

[1] TRUE

x==1 | y==4

[1] TRUE

23 / 35

OBJECTS

<- assigns values to a named object.

my_variable <- 5

another_variable <- "Max"

third_var <- TRUE

Objects are saved and can be referenced and modified.

my_variable + 3

[1] 8

another_variable == "John"

[1] FALSE

24 / 35

Many ways to name variables.

snake_case_uses_underscores

camelCaseUsesCapitalLetters

you.can.also.use.periods

thisisreallyhardtoread

thisIs_also.hardTOREAD

Choose a system and be consistent.

Variable names must be exact:

Case sensitive

Identical punctuation

my_variable and my_Variable are
two different objects.

If you get an error like this, check
that the variable name is correct:

 my.var
 Error: object 'my.var' not found

OBJECTS

25 / 35

Numbers:

Integers: 1, 2, 10456

Doubles: 1.2, 3.99, -15.75769567

Strings / characters:

Enclosed in single or double quotes.

"Joe Biden", 'Bernie Sanders'

Numbers in quotes are treated
as strings:

Booleans:

Object that can only have the value
TRUE or FALSE.

Can be abbreviated to T or F.

Groups of Objects:

The function c() creates vectors
and lists:

Vectors are sets of the same data
type.

Lists may have different types.

my_vector <- c(1, 2, 3, 4, 5)

OBJECT TYPES

26 / 35

PREPARING OBJECTS

If you type the name of an object, R will print a version of it in the console.

Simple objects (numbers, strings, lists...) will be printed.

More complex objects may be printed differently (models.)

x <- "ABC"
x

[1] "ABC"

my_vector

[1] 1 2 3 4 5

27 / 35

Functions are blocks of code that do
something.
This function prints the alphabet:

print_alpha <- function() {
 print("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
}

print_alpha()

[1] "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Functions often take arguments, which
we list as variable names in the
parentheses that follow the function
name.
The function then uses those
arguments.
Functions also return an object, which
can be saved.

geometric_mean <- function(x1, x2) {
 y <- sqrt(x1*x2)
 return(y)
}

geometric_mean(5, 10)

[1] 7.071068

FUNCTIONS

28 / 35

R has many built in functions.

Packages will add more functions.

And we can also write our own
functions.

We can use functions to save time.

Instead of writing the same code to
do the same thing multiple times,
write one function and then call it
multiple times.

Some uses of functions:

Create objects

Complex calculations

Statistical models

Graphs & Maps

Generate output (e.g. tables)

FUNCTIONS

29 / 35

Some useful starter functions:

c()

length() & dim()

seq() & rep()

sum(), mean()

min(), max()

sum(1, 2, 4, 5) # Adds numbers

[1] 12

seq(1, 10) # Sequence of numbers

[1] 1 2 3 4 5 6 7 8 9 10

seq(0, 10, 2) # Count by last argument

[1] 0 2 4 6 8 10

c("A", "B", "C") # Create a list or vec

[1] "A" "B" "C"

FUNCTIONS

30 / 35

PACKAGES

Packages extend R by adding new functionality.

Install package with the code install.packages("package_name")

After installing, load a package with library(package_name)

31 / 35

PACKAGES

Tidyverse

A set of packages that make it easy to load, clean, and manipulate data.

Includes ggplot, a package for making graphs.

There are many other packages that do similar things.

We will use tidyverse because the syntax is relatively simple and readable.

There are faster options for more complex problems.

32 / 35

Install the tidyverse packages:

install.packages("tidyverse")
library(tidyverse)

Result should look like this:

If you get an error:

Does it mention the stringi
package?

 install.packages("stringi")
 install.packages("tidyverse")
 library(tidyverse)

Something else?

INSTALLING TIDYVERSE

33 / 35

GETTING HELP

You can search the R help files by typing ? and a function name.

?sum

The help files tell you what a function does, how to use it, and it's arguments.
Help files often include sample code, which you can use to learn how a function works
and then modify.

34 / 35

GRAPHS

library(tidyverse)
ggplot(mpg, aes(x=displ, y=hwy, color = class)) +
 geom_point()

35 / 35

