PO 399

Lecture 2

Ahyoung Cho

Department of Political Science

Summer 2024

TODAY

- Problem Set 0 Released (Due on Sunday, June 2 by 11:59 PM)
- Lab Session: Creating data frames
- Correlation
- Understanding File Paths
- Lab Session: Has voter turnout increased over time?
- Practice Problems

CORRELATIONS

WHICH OF THESE STATEMENTS DESCRIBE CORRELATIONS?

- 1. People who live to be 100 years old typically take vitamins.
- 2. Cities with more crime tend to hire more police officers.
- 3. Successful people have spent at least ten thousand hours honing their craft.
- 4. Most politicians facing a scandal win reelection.
- 5. Older people vote more than younger people.

CORRELATION

- Correlation tells us about the extent to which two features of the world tend to occur together or not.
- If two features of the world (or variables) tend to occur together, they are *positively* correlated.
- If the occurrence of one feature is unrelated to the other, they are *uncorrelated*.
- If when one feature occurs, the other tends not to occur, they are *negatively* correlated.

- PO 399
- Paradox of plenty: countries with an abundance of natural resources are often less economically developed and less democratic than those with fewer natural resources.
- Correlation between natural resources and economic/political system.
 - Natural Resources: Is country a major oil producer?
 - Major oil producer if a country exports more than 40,000 barrels per day per million people.
 - Political System: Is country considered an autocracy or a democracy?

Not major oil producer Major oil producer

Not major oil producer Major oil producer

Pr(Democracy) $118/(118+29) \approx .802$ 9/(9+11) = .45

Not major oil producer Major oil producer

 $9/(9+118) \approx .071$

Pr(Oil)

11/(11+29) = .275

CORRELATION EXAMPLE WITH TWO CONTINOUS VARIABLES

Crime and Temperature in Chicago

10/34

CORRELATION EXAMPLE WITH TWO CONTINOUS VARIABLES

Crime and Temperature in Chicago

CORRELATION EXAMPLE WITH TWO CONTINOUS VARIABLES

PO 399

WHICH OF THESE STATEMENTS DESCRIBE CORRELATIONS?

- 1. People who live to be 100 years old typically take vitamins.
- 2. Cities with more crime tend to hire more police officers.
- 3. Successful people have spent at least ten thousand hours honing their craft.
- 4. Most politicians facing a scandal win reelection.
- 5. Older people vote more than younger people.

CORRELATION OR JUST DESCRIPTIVE FACT?

Most politicians facing a scandal win reelection

CORRELATION OR JUST DESCRIPTIVE FACT?

Most politicians facing a scandal win reelection

CORRELATION OR JUST DESCRIPTIVE FACT?

Most politicians facing a scandal win reelection

Pr(Reelected) $1,192/(1,192+101) \approx .922 \quad 62/(62+8) \approx .886$

Most politicians facing a scandal win reelection

The table below shows some data on which countries are major oil producers and which countries experienced a civil war between 1946 and 2004.

Are being a major oil producer and experiencing civil war positively correlated, negatively correlated, or uncorrelated? Explain your answer.

	Civil War	No Civil War
Oil Producer	7	12
Non-Oil Producer	55	94

POTENTIAL USES OF CORRELTION

Description

- Suppose we want to know if young people are underrepresented in elections?
- We might be interested in the correlation between age and voter turnout.
- No assumptions necessary (assuming we have good data).

POTENTIAL USES OF CORRELTION

PO 399

Prediction/Forecasting

- Suppose we want to predict which restaurants are violating public health regulations.
- The correlation between negative Yelp reviews and hospitalizations from food-borne illness could be useful.
- We'd need to assume that the sample of restaurants for which we have data is representative of the population of restaurants for which we want to make predictions.
- We'd probably also want to think about linearity and avoid extrapolation (more on this later).

POTENTIAL USES OF CORRELTION

PO 399

Causal inference

- Suppose we want to know if high school students would be more successful in life if they were forced to take calculus.
- The correlation between calculus and future success might be useful.
- But we'd have to assume that the students taking calculus are otherwise the same as everyone else in terms of their underlying chances of success.
- Aside from very special circumstances, this kind of assumption will be hard to defend.

• Which of these statements describes a correlation?

1. Most professional data analysts took a statistics course in college.

- 2. Among Major League Baseball players, pitchers tend to have lower batting averages.
- 3. Whichever presidential candidate wins Ohio tends to win the Electoral College.
- Consider the last statement about Ohio and presidential elections. Do you think it's useful for description? Forecasting? Causal inference? Why or why not?

UNDERSTANDING FILE PATHS

SETTING WORKING DIRECTORIES

• You can see what working directory you are in by running the function getwd().

• You can set your working directory with a function setwd().

setwd("/Users/cho/PO 399 Summer 2024/Lectures/Lecture 2")

- **setwd()** uses an absolute file path which is specific to the computer you are working on.
- Very difficult to share your script with others.

RSTUDIO PROJECTS

- RStudio projects solve the problem by using the relative file paths.
- The RStudio project file (.Rproj) is located in the root directory.
- When you work on an RStudio session via the project file, the current working directory will be set to the root folder where the .Rproj file is stored.

CREATING RSTUDIO PROJECTS

• To create a project, open RStudio and select File -> New Project... from the menu.

New Project Wizard				
Create Project				
R	New Directory Start a project in a brand new working directory	>		
R	Existing Directory Associate a project with an existing working directory	>		
P	Version Control Checkout a project from a version control repository	>		
		Cancel		


```
library(tidyverse)
```

```
dat <- read_csv("voter_turnout.csv")</pre>
```

names(dat)

[1] "year" "turnout" "vap"
[4] "vep" "registered_voters"

PO 399

head(dat)

#	A tib	ole: 6 × 5			
	year	turnout	vap	vep	registered_voters
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1980	86496851	163945000	159635102	105135000
2	1984	92654861	173995000	167701904	116106000
3	1988	91586725	181956000	173579281	118598000
4	1992	104600366	189493000	179655523	126578000
5	1996	96389818	196789000	186347044	127661000
6	2000	105594024	209130000	194331436	129549000
	# 123456	<pre># A tibl year <dbl> 1 1980 2 1984 3 1988 4 1992 5 1996 6 2000</dbl></pre>	<pre># A tibble: 6 × 5 year turnout <dbl></dbl></pre>	<pre># A tibble: 6 × 5 year turnout vap <dbl></dbl></pre>	<pre># A tibble: 6 × 5 year turnout vap vep <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1 1980 86496851 163945000 159635102 2 1984 92654861 173995000 167701904 3 1988 91586725 181956000 173579281 4 1992 104600366 189493000 179655523 5 1996 96389818 196789000 186347044 6 2000 105594024 209130000 194331436</dbl></dbl></dbl></dbl></dbl></dbl></pre>

glimpse(dat)

##	Ro	ows: 10			
##	Сс	olumns: 5			
##	\$	year	<dbl></dbl>	1980, 1984, 1988, 1992, 1996, 2000, 2004, 2008, 201	2
##	\$	turnout	<dbl></dbl>	86496851, 92654861, 91586725, 104600366, 96389818,	1
##	\$	vap	<dbl></dbl>	163945000, 173995000, 181956000, 189493000, 1967890	0
##	\$	vep	<dbl></dbl>	159635102, 167701904, 173579281, 179655523, 1863470	4
##	\$	<pre>registered_voters</pre>	<dbl></dbl>	105135000, 116106000, 118598000, 126578000, 1276610	0

- Create a new variable
 - mutate creates new variables.
 - Add a new variable for voter turnout percentage; overwrite the dat object (how do we define turnout?).

```
dat <- mutate(dat, turnout_pct = turnout/vep)
glimpse(dat)</pre>
```


• Visualize the trend

```
ggplot(dat, aes(x=year, y=turnout_pct))
geom_point() +
geom_line()
```


• Measure the correlation

• **cor()** is a new function, that takes two variables as arguments.

• Reference a variable *within* a dataframe using **data_frame\$variable_name**.

cor(dat\$turnout_pct, dat\$year)

[1] 0.6458835

cor(dat\$year, dat\$turnout_pct)

[1] 0.6458835

NEXT CLASS

• Causation

