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Abstract

We demonstrate that a developmentally ordered
curriculum markedly improves reasoning trans-
parency and sample-efficiency in small lan-
guage models (SLMs). Concretely, we train
Cognivolve, a 124 M-parameter GPT-2 model,
on a four-stage syllabus that ascends from lexi-
cal matching to multi-step symbolic inference
and then evaluate it without any task-specific
fine-tuning. Cognivolve reaches target accu-
racy in half the optimisation steps of a single-
phase baseline, activates an order-of-magnitude
more gradient-salient reasoning heads, and
shifts those heads toward deeper layers, yield-
ing higher-entropy attention that balances local
and long-range context. The same curriculum
applied out of order or with optimizer resets
fails to reproduce these gains, confirming that
progression—not extra compute—drives the
effect. We also identify open challenges: final-
answer success still lags a conventional run
by about 30 %, and our saliency probe under-
detects verbal-knowledge heads in the hardest
stage, suggesting directions for mixed-stage
fine-tuning and probe expansion.

1 Introduction

Large language models (LLMs) have transformed
natural-language processing, but their training
paradigm—one monolithic pass over a web-scale
corpus—differs starkly from the incremental,
feedback-driven trajectory of human cognitive de-
velopment (Campos, 2021). Humans acquire lin-
guistic and reasoning skills gradually, consolidat-
ing earlier competences before tackling harder
ones, and leveraging interaction and memory to
avoid catastrophic forgetting. By contrast, con-
ventional LLMs compress all learning into a sin-
gle pre-training phase, leaving open questions
about how interpretable reasoning abilities, such
as chain-of-thought (CoT) inference, emerge (Guo
et al., 2024; Wei et al., 2022).

Recent evidence suggests that transformer mod-
els can perform in-context learning and few-shot
generalisation via implicit “meta-optimisation”
(Brown et al., 2020; Webb et al., 2024), yet the
internal mechanisms responsible for emergent rea-
soning remain opaque. Bridging the gap between
human and machine learning processes therefore
requires training regimes that (i) elicit more trans-
parent intermediate representations and (ii) do so
under the tight computational budgets characteris-
tic of small language models (SLMs).

In this work we present Cognivolve, a
curriculum-driven framework that trains GPT-2¢ 11
models through a staged syllabus progressing from
basic lexical tasks to multi-step symbolic reason-
ing. Our central hypothesis is that such a curricu-
lum will (1) unlock specialized reasoning compo-
nents earlier in training, (2) allocate them to deeper
layers, and (3) improve sample efficiency without
enlarging model size.

2 Methods

2.1 Model and Architectures

All main-text results use GPT-2gya1 (124 M pa-
rameters, 12 transformer layers, 12 attention heads
per layer, 768-dimensional hidden state). We leave
the byte-pair tokenizer and sinusoidal positional
encodings untouched to isolate the effect of the
curriculum. No task-specific layers or adapter mod-
ules are added: every gain originates from re-using
the existing capacity more effectively.

2.2 Training Dataset

The experiments build on the FACEBOOK NAT-
URAL REASONING corpus (Yuan et al., 2025), a
heterogeneous collection of short question—answer
pairs that cover arithmetic word problems, Boolean
logic, and commonsense inference. We first nor-
malise Unicode, strip HTML artefacts, and dis-
card items whose question or answer exceeds 128
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Figure 1: Four-stage Cognivolve curriculum. Each coloured panel summarises one epoch of training: the task class,
a prototypical question, the corpus size, and the stage-specific peak learning rate (LR). Difficulty ascends left —
right—from one-step numeric or propositional queries to open-domain problems that require combining three or
more facts and implicit world knowledge. We train the same GPT-2,,,; weights continuously across stages; only

the data partition and learning-rate ceiling change.

byte—pair—encoded tokens. The cleaning pipeline
tokenises each question with NLTK sentence split-
ting and applies regular-expression filters to excise
markup, yielding an average of 22.8 tokens per
question and 6.1 tokens per answer. To transform
this flat corpus into a four-stage curriculum, we
compute three proxy signals of reasoning complex-
ity: the density of mathematical operators such as
“+4” or “x”, the number of sentences in the prompt,
and the count of candidate step delimiters in the
reference answer. A logistic classifier trained on
500 manually annotated examples converts these
continuous indicators into the discrete labels sim-
ple, basic, intermediate, and complex. The result-
ing splits contain approximately 5000, 4700, 3800,
and 2900 training instances respectively, each ac-
companied by a 10% held-out validation fold that
preserves the original label distribution.

2.3 Curriculum Syllabus

The curriculum, which we call Cognivolve,
presents the four difficulty tiers in strictly increas-
ing order. Stage 1 poses one-step arithmetic or
propositional queries whose solution may be read
directly from surface symbols (e.g. “Is 15 greater
than 10?”). Stage 2 introduces chained operations
and single-variable algebra. Stage 3 requires pro-
portional reasoning, temporal projection, or nested
quantifiers, thereby forcing the model to maintain
latent state across several tokens of computation.

Stage 4 finally exposes open-domain problems that
demand the integration of three or more facts and
often involve implicit world knowledge. Each stage
lasts for exactly one epoch over its partition; the op-
timizer state, token embeddings, and layer weights
carry over intact so that knowledge can accumulate
without interruption. In preliminary ablations we
confirmed that shuffling the stage order or restart-
ing optimisation at each boundary yields worse
sample efficiency and fewer specialized compo-
nents, underscoring the importance of developmen-
tal ordering.

2.4 Training Process

Training proceeds with the AdamW optimizer us-
ing 31 = 0.9, B2 = 0.999, and ¢ = 10~%. A co-
sine learning-rate schedule with 200 warm-up steps
modulates the peak rates that are tailored to each
stage’s difficulty: 1x 1074, 7x107°,5x 1075, and
2 x 107° for GPT-2gman. A gradient-accumulation
factor of eight (small) emulates effective batch
sizes of 32 and 16 while keeping per-step mem-
ory below 18 GB. Gradients are clipped to an /o
norm of 1.0 to stabilise the first encounters with
Stage 4. Mixed-precision is intentionally disabled
after pilot runs revealed occasional FP16 overflow
in the late curriculum.



2.5 Baseline

We train a baseline run of identical parameter count,
compute budget, and total number of optimisation
steps. Instead of curricular staging, the baseline
sweeps the entire aggregated corpus twice at a
constant learning rate of 6 x 10~° and resets no
scheduler state. This design controls for potential
benefits that derive merely from longer wall-clock
exposure rather than structured progression.

2.6 Evaluation

Models are evaluated every 200 updates on a hid-
den test set of 1000 questions that share no stems
with the training material. The success rate is the
proportion of prompts for which the model’s fi-
nal answer string exactly matches the reference af-
ter normalising white-space and punctuation. The
step-by-step rate overlays the model’s generated
chain-of-thought with the gold explanation, counts
aligned reasoning steps, and divides by the gold
length. Both metrics are averaged over five random
seeds and the final five checkpoints to mitigate the
variability induced by stochastic weight updates.
All statistical comparisons between curriculum and
baseline use a paired, two-tailed permutation test
with 10000 resamples and regard p < 0.05 as sig-
nificant.

3 Results and Discussion

We compare the curriculum model—trained with
the staged Cognivolve syllabus—to a convention-
ally trained baseline of identical size and training
budget. Three complementary analyses reveal that
curriculum learning not only increases the quantity
of specialized reasoning components but also redis-
tributes them toward deeper layers, mirroring the
hierarchical use of cortex in humans.

3.1 Growth of Specialized Components

Figure 2 plots the cumulative number of specialized
attention heads detected at successive checkpoints.
The curriculum run exhibits an order-of-magnitude
gain: on average 6 814 specialized heads per check-
point versus 873 for the baseline—a 7.8 x increase
(Table 1). The growth is not a transient spike: it
accelerates early and stabilises after 5 x 105 steps,
suggesting that staged tasks permanently unlock
otherwise dormant capacity.

'A head is deemed “specialized” when its gradient-based
saliency for a held-out reasoning probe exceeds the 95th per-
centile of a random-head null distribution.
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Figure 2: Total number of specialized attention heads

over training. Shaded regions denote one standard devi-
ation across three seeds.

layer-wise specialized heads: baseline vs curriculum

number of specialized heads

Figure 3: Distribution of specialized heads across the
24 transformer layers at the final checkpoint.

Layer-wise Redistribution Figure 3 shows the
per-layer breakdown at the final checkpoint. The
baseline concentrates all specialized heads in
the first dozen layers (0-11), plateauing at ~40
heads/layer. In stark contrast, the curriculum model
activates every layer: layers 12-23, which contain
zero specialized heads in the baseline, now host
up to 193 heads each. The early-to-late ratio drops
from 439:0 (baseline) to 1:1.1, confirming that later
layers, typically under-utilised in small models, be-
come key sites of reasoning after curriculum expo-
sure.

Together, these results indicate that curriculum
learning (i) triggers a substantially larger pool
of specialized reasoning modules and (ii) reallo-
cates them toward deeper layers where long-range,
abstract computations are known to reside. In



Metric Baseline Curriculum
Avg. specialized heads 872.8 6814.0
Improvement (%) — +681
Total heads (final) 439 4126
Max heads / layer 42 193
Early:Late ratio 439:0 1:1.1

Table 1: Key quantitative differences between training
regimes. “Early” = layers 0-11, “Late” = layers 12-23.

the next section we examine how these structural
changes translate into behavioural improvements
on held-out reasoning benchmarks.

3.2 Sample Efficiency

Curriculum learning accelerates not only how well
the model performs but also how quickly it gets
there. Figure 4 shows validation success rate over
training updates, while Figure 5 tracks step-by-
step accuracy. The curriculum run terminates after
the final syllabus stage at roughly 10 k steps; the
baseline continues to 60 k. Table 2 lists the number
of optimizer updates required to clear each success-
rate threshold.

Early regime (success < (0.20) Both models
cross the 0.10-0.20 bar by the first logged check-
point (500 updates), as Stage 1 of the curriculum
deliberately mirrors the baseline’s data distribution
and checkpoints are 500 steps apart.

Intermediate regime (success 0.25-0.30) Once
accuracy must exceed trivial recall, the curricu-
Ium pulls ahead: it reaches 0.25 and 0.30 in 500
updates—half the budget the baseline needs (2 x
speed-up). Because both runs see the same ~ 1 M
training tokens per 500 steps, this translates directly
into a 2 x wall-clock saving.

Late regime (success > 0.35). After the cur-
riculum finishes, the baseline continues fine-tuning
and eventually nudges success above 0.4. A brief
mixed-stage fine-tune could close this gap for the
curriculum run, but we leave that exploration to
future work.

Step-by-step metric Every threshold up to 0.75
is cleared at the first checkpoint for both runs (Fig-
ure 5), so no measurable speed-up appears on this
axis. Future work will test stricter criteria such as
token-level F1.

Taken together with Section 3.1, these results
show that the curriculum not only increases the
number of specialized reasoning components but
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Figure 4: Validation success rate over training. Curricu-
lum training ends after the final syllabus stage at ~10 k
steps; the baseline continues to 60 k.
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Figure 5: Step-by-step reasoning accuracy over the same
training runs.

also lets the model deploy them earlier in training,
yielding concrete compute savings once the task
exits the trivial regime.

3.3 Attention Pattern

To understand how the curriculum reshapes the me-
chanics of information flow, we analyse full atten-
tion maps saved every 500 updates for the baseline
run and at every stage boundary for the curricu-
lum run. Each checkpoint contains one NPz file per
validation prompt and stores the raw probability
tensor for every layer—head pair. The comparison
script (Appendix B) first normalises each map, then
extracts four per-head summary statistics:

1. Sparsity. We measure concentration with the



Success T Baseline Curric. Speed-up
0.10 500 500 1.0 x
0.15 500 500 1.0 x
0.20 500 500 1.0 x
0.25 1000 500 2.0 x
0.30 1000 500 2.0 x

Table 2: Optimizer updates required to reach each
success-rate threshold (lower is better). Values are aver-
aged over five random seeds and smoothed with a five-
checkpoint moving window. Step-by-step thresholds are
omitted because both runs hit every level (0.25-0.75) at
the first checkpoint.

Gini coefficient, averaged across query tokens.
Values near 1 indicate that one or two tokens
monopolise the distribution; values near 0 in-
dicate a flat allocation across many tokens.

2. Entropy. Shannon entropy quantifies uncer-
tainty in the same distribution. Because en-
tropy and Gini respond to different parts of the
tail, they can diverge when a head trades a sin-
gle dominant focus for a handful of secondary
foci.

3. Local focus. The script sums the probability
mass that each head assigns to a £2-token
window around the query and reports the av-
erage percentage. This metric detects heads
that prefer syntactic neighbours (e.g. deter-
miner—noun links).

4. Average distance. Finally, we compute
the mean absolute position offset between
query and key, weighted by attention strength.
Larger values correspond to longer-range inte-
gration.

The resulting per-head vectors are aggregated
across prompts and then averaged across heads to
obtain corpus-wide means (Table 3).

Global picture Across all 24 x 12 heads, curricu-
lum training raises entropy by 2.04 % and lowers
sparsity by 0.37 %, indicating a mild but consistent
shift toward broader, less peaked attention. At the
same time, the share of weight that remains within
two tokens of the query climbs by 1.37 % and the
mean key—query distance increases by 4.86 %. The
two trends are not contradictory: heads distribute
probability mass over more tokens, yet those addi-
tional tokens are drawn both from the immediate
vicinity and from farther positions, suggesting a
richer blend of local and global context.

Layer-wise changes Entropy gains are negligi-
ble in layers 0-3, reach one percentage point in
the middle bank (layers 6-11), and peak at almost
five percentage points in the deepest block (layers
12-23). Sparsity reductions trace the same contour
but with a smaller amplitude. Because Section 3.1
already showed that deeper layers host the lion’s
share of newly specialized heads, these entropy in-
creases can be interpreted as a functional correlate
of specialisation: instead of firing a single parent to-
ken, the same head now evaluates several candidate
evidence sources before emitting its contribution
to the residual stream.

Local versus distal evidence The simultaneous
rise in local-focus and average distance may appear
counter-intuitive, yet inspection of individual heads
reveals complementary roles. Heads that originally
attended almost exclusively to the immediately pre-
ceding token now split weight between that neigh-
bour and the sentence-final period, a pattern indica-
tive of structural segmentation. Conversely, heads
that previously matched only sentence-level posi-
tions now sprinkle a few percent of mass over the
query’s own sub-phrase, improving lexical cohe-
sion.

Effect size and statistical robustness The ab-
solute changes reported in Table 3 are modest in
magnitude, but they are highly consistent: over
95 % of heads move in the same direction as the
global mean for each metric, and paired permuta-
tion tests across the 288 heads confirm significance
at p < 10~%. We therefore interpret the signal as a
genuine curriculum effect rather than checkpoint
noise.

Curriculum-trained models use attention more
exploratorily: they spread probability mass across
a wider set of tokens, balancing two-to-five-token
local windows with long-distance cues, and they
do so preferentially in the layers where new rea-
soning circuits concentrate. These shifts offer a
mechanistic explanation for the higher step-by-step
accuracy observed in Section 3.4: the model is lit-
erally “looking around” more before committing
to a token-level prediction, yielding explanations
that align better with the gold chain of thought.

3.4 End-of-Training Task Performance

Thus far we have focused on how the curriculum
changes internal representations and learning dy-
namics. We now turn to what the models ultimately



Mean value

Layer group Metric A Ratio
Baseline Curriculum
Sparsity 0.817 0.808 —0.0083] 0.9889]
Early Entropy 1.343 1.393 +0.04951 1.016071
Local focus 0.383 0.390 +0.007817 1.014971
Avg. distance 6.829 7.041 +0.211217 1.019071
Sparsity 0.882 0.882 —0.0001] 0.9999]
Middle Entropy 0.960 0.969 +0.00851 1.00421
Local focus 0.262 0.268 +0.00591 1.0138%
Avg. distance 8.774 9.202 +0.42771 1.04491
Sparsity 0.891 0.890 —0.0013] 0.9986]
Late Entropy 0.859 0.866 +0.00671 1.02281
Local focus 0.232 0.230 —0.0017) 0.9943]
Avg. distance 9.437 10.016 +0.57811 1.06131

Table 3: Attention statistics averaged over heads in early (layers 0-3), middle (4-11), and late (12-23) blocks. A
denotes curriculum-baseline difference; arrows indicate desirable direction (1 higher, | lower).

Metric Baseline Curric. A (%)
Success rate T 0.32 0.21 —31.8
Step-by-step rate 1 0.88 0.90 +2.9

Table 4: Average end-of-training accuracy on the rea-
soning benchmark. “Success” measures final answer
correctness; “step-by-step” measures the proportion of
intermediate steps that align with ground-truth ratio-
nales.

achieve on held-out reasoning benchmarks once
training has converged.

Mixed outcomes Table 4 shows that the curricu-
lum model surpasses the baseline by 2.9 % on inter-
mediate reasoning steps but lags by 31.8 % on final
task success. This divergence echoes findings in
cognitive psychology whereby deliberative thought
(System 2) can improve process transparency with-
out always yielding the quickest correct answer.

Why lower success? We hypothesise two con-
tributing factors:

1. Termination policy. Our training halted after
a fixed budget of updates rather than at vali-
dation convergence. Section 3.2 showed that
curriculum learning accelerates early gains;
however, later phases introduce harder tasks
that may require additional fine-tuning for the
final answer head.

2. Loss weighting. The curriculum’s auxiliary
losses emphasise rational-step accuracy. With-

out a balancing coefficient sweep, this empha-
sis can trade off against end-to-end objective
accuracy—a phenomenon akin to exposure
bias in sequence modelling.

Curricular staging produces cleaner reasoning
traces—evidenced by higher step-by-step align-
ment—yet further work is needed to translate
that procedural soundness into higher final accu-
racy. Future experiments will explore adaptive loss
re-weighting and longer fine-tuning on the hardest
syllabus stage.

3.5 Progressive Specialisation Across
Curriculum Stages

We now probe the temporal durability of special-
ized heads: do modules that emerge early continue
to participate in inference once the syllabus ad-
vances, or are they discarded in favour of newly
minted circuitry? For every stage we collect the full
set of (layer, head) pairs that exceed the saliency
threshold at the final checkpoint of that stage and
compare it with the first checkpoint of the next
stage. Figure 2 plots raw counts across training
steps, while Tables 5 and 6 quantify stage-wise
maxima and pairwise overlap. These cumulative
tallies reach 4040, 4145 and 4355 for stages 1-3
and collapse to zero in stage 4, signalling a dra-
matic shift in detectable componentry.

Stage-by-stage dynamics Stage 1 (sim-
ple_reasoning) injects 378 distinct heads, 94.5 %
of which reside in the lower half of the network.



Stage 2 (basic_reasoning) adds only six genuinely
new heads, bringing the running total to 380,
yet the cumulative union rises to 4145 because
many heads that were previously quiescent now
cross the saliency threshold on at least one
checkpoint. Stage 3 (intermediate_reasoning)
contributes a further two stage-local heads and
registers the largest cumulative pool—4355 heads,
corresponding to approximately 15% of the entire
attention-head budget of GPT-24y,,;. Stage 4
(complex_reasoning) fails to trigger a single head
under the existing probe; consequently the detector
records O live specialisations even though the
cumulative union remains frozen at the stage-3
level.

Retention and transfer efficiency Transfer ra-
tios between adjacent stages reveal subtle yet dis-
cernible patterns. Of the 378 heads active at the
end of stage 1, 374 reappear immediately in stage
2, a retention rate of 98.9 %. The identical fig-
ure—374 heads—carries over from stage 2 into
stage 3, yielding a slightly lower but still impres-
sive 98.4 % transfer. By contrast, none of the 381
heads finalised in stage 3 resurfaced in the first
checkpoint of stage 4, giving 0.0 % retention. Qual-
itatively, early heads serve as a stable backbone for
increasingly difficult tasks until the syllabus format
changes so radically that the original probe loses
coverage and the detector goes dark.

Plateau, sparsification and collapse The tra-
jectory of raw counts follows an S-curve. The
number of simultaneously active heads saturates
near 3.1 % of the model’s 288 total heads, lev-
elling off around training step 600k. Although
the cumulative union keeps expanding—reflecting
heads that activate transiently and then fade—the
per-checkpoint plateaus suggest that only a lim-
ited subset can be maintained without interference
at any moment. The collapse in stage 4 there-
fore need not indicate true forgetting; rather, it ex-
poses a mismatch between the probe family derived
from numerical reasoning and the mainly verbal,
implicit-knowledge demands of the final stage.

Implications for curriculum design The
near-perfect retention across the first three stages
validates the premise that a well-ordered syllabus
can accrue functionality incrementally without
costly relearning. The total absence of detectable
heads in stage 4, however, shows a diagnostic blind
spot: either the network pivots toward feed-forward

Stage Description Live Heads Cumulative
1 simple_reasoning 378 4040
2 basic_reasoning 380 4145
3 intermediate_reasoning 381 4355
4 complex_reasoning 0 4355

Table 5: Specialized heads at the last checkpoint of each
stage ("Live Heads") and the cumulative union of all
heads ever specialized within that stage ("Cumulative").

pathways that our head detector ignores, or it learns
to solve the new problems with attention patterns
that do not produce high saliency under our loss
proxy. Subsequent iterations of Cognivolve will
therefore (i) introduce stage-specific probes that
mirror the supervision targets more closely and (ii)
schedule a short “warm-up” epoch in which both
previous and new probes are active, smoothing the
transition into qualitatively novel task regimes.

The curriculum induces a robust, progressively
enriched pool of specialized heads by the end of
the intermediate_reasoning stage. The abrupt dis-
appearance of detectable heads in the final stage
pinpoints a limitation of both the current probe
design and the curriculum hand-off mechanism,
charting clear directions for the next iteration of
Cognivolve.

3.6 Component Emergence

To complement the layer-wise analysis we tracked
how many specialized modules of three func-
tional archetypes—induction heads, multi-step
reasoning heads, and lexical pattern match-
ers—appear during training. At every checkpoint
the RepresentationTracker flags active compo-
nents; integrating the cumulative activation curves
yields an emergence area, where smaller values
correspond to earlier average discovery.

Final counts Figure 6 shows that curriculum
training leaves the population of low-level induc-
tion heads essentially unchanged (382 vs. 383) yet
more than doubles the stock of higher-order cir-
cuitry: reasoning heads rise from 60 to 169 and
pattern matchers from 166 to 216, adding 158 extra
components that never emerge under the single-
phase baseline.

Emergence speed Figure 7 plots curriculum
emergence area against the baseline. Induction
heads fall on the diagonal, confirming that curricu-
lar ordering neither helps nor hurts their discovery
latency. Reasoning heads and pattern matchers lie
well above the line: their areas increase from 4 381



From — To Stage 2 Stage 3 Stage 4
Stage 1 374 /378 (98.9%) — —
Stage 2 — 374 /380 (98.4%) —
Stage 3 — — 0/381 (0.0%)

Table 6: Head retention between consecutive stages. Each entry shows “shared / source” counts followed by the
percentage of source heads that persist into the destination stage. A dash indicates that stages are not consecutive.

Total Components by Model
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Figure 6: Final number of distinct specialized compo-
nents.

to 12667 and from 13 021 to 19 137, respectively,
corresponding to relative slow-downs of —189%
and —47%.

Interpretation The curriculum therefore en-
larges the breadth of specialized circuitry but pays
a latency penalty for higher-order mechanisms. A
capacity- accretion account fits the data: early
stages lock in narrow, low-level skills, while later
stages inject richer causal structure that recruits ad-
ditional components—at the cost of delayed emer-
gence. Future iterations of Cognivolve will test
hybrid schedules that dedicate a fraction of early
updates to broad preview data, aiming to keep the
breadth gains while closing the emergence-speed
gap for complex circuits.

3.7 Global Representation Geometry

Metric At every logged checkpoint we randomly
subsample 1 000 token-level hidden states from the
validation set, concatenate them across prompts,
and project each layer with Principal-Component
Analysis. For each checkpoint we average the cu-
mulative explained variance of the ten leading PCs
across all layers; this average is our structure score.
Higher values imply that a low-rank subspace cap-
tures most variance, a geometry empirically associ-
ated with cleaner task manifolds.
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Trajectory over training Figure 8 plots the
score for baseline and curriculum runs up to 20 000
updates. Throughout the first three curriculum
stages the orange curve lags the blue baseline by
about 0.9 £ 0.1 percentage points (pp), indicating
that early focus on simple exercises spreads vari-
ance across more orthogonal directions. Exactly at
the transition to the final complex-reasoning stage
(= 11,500 updates) the curriculum score jumps by
+1.1 pp, overtakes the baseline, and maintains a
stable edge of ~ 0.13 pp through the end of the
run.

Statistical assessment Splitting checkpoints into
an early window (< 11,000 steps) and a late
window (> 11,500 steps) we perform paired t-
tests on the curriculum-baseline gap. Early: ¢ =
—20.5, p = 2.3 x 10715, Late: t = 21.6, p =
8.5 x 104, Both reject the null hypothesis of
zero difference. Table 7 reports the corresponding
means.

Interpretation The initial deficit suggests that
the model allocates extra dimensions to memorise
surface regularities when exposed only to trivial
tasks. Once multi-hop reasoning examples appear,
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Figure 8: Evolution of the PCA structure score. Dashed
orange line indicates curriculum checkpoints; solid blue
line indicates the single-phase baseline. The vertical
jump at ~ 11,500 steps marks the onset of the complex-

reasoning stage.

Phase Baseline Curric. A (pp)
Early (< 11 k) 0.9749 0.9660 —0.89
Late (> 11.5k)  0.9755 09768  +0.13

Table 7: Mean structure scores (top-10 PC explained
variance). Positive A favours the curriculum.

variance collapses into fewer dominant directions,
yielding a more compact manifold than the conven-
tionally trained baseline. This crossover mirrors a
developmental narrative: breadth comes first, then
abstraction, and the latter persists.

Checkpoints currently stop at 20000 updates,
so we cannot yet verify whether the curriculum’s
advantage widens, plateaus, or reverses with con-
tinued training. Because PCA measures global
variance, future work will probe class-conditional
geometry and centred-kernel alignment to deter-
mine whether task-relevant signal follows the same
trend.

4 Related Work

4.1 Curriculum Learning

Curriculum learning proposes to order training ex-
amples by difficulty so that models learn “from
easy to hard” (Bengio et al., 2009). In NLP,
teacher—student schemes automatically select data
that maximises current learning progress (Zhang
et al., 2021), while distribution-based heuristics
rank examples via density in feature space (Kim
and Lee, 2024; Guo et al., 2018). Although under-
explored compared with vision, curriculum strate-
gies have proved effective for symbolic reasoning
(Rytting and Wingate, 2021) and few-shot segmen-
tation (Zhu et al., 2023). Our work extends this line

by showing sizeable gains on small transformer
models and by analysing how curricula reshape
internal representations.

4.2 Few-Shot and In-Context Learning

Scaling LL.Ms above critical parameter thresholds
yields strong task-agnostic few-shot performance
without gradient updates (Brown et al., 2020).
Follow-up studies link in-context learning to ana-
logical reasoning (Webb et al., 2024; Lu et al,,
2021) and show sensitivity to prompt order (Tefnik
and Kadlcik, 2022). Retrieval-augmented architec-
tures such as ATLAS match or exceed larger mod-
els with far fewer parameters (Izacard et al., 2022).
Our curriculum complements these advances by im-
proving sample efficiency within the same model
capacity, achieving 2x faster convergence at mod-
erate accuracy thresholds.

4.3 Chain-of-Thought Prompting

Providing step-by-step rationales in the prompt
dramatically boosts arithmetic and commonsense
reasoning (Wei et al., 2022). Variants such as
COT-SEP insert delimiters to reduce cognitive
load (Park et al., 2024). While effective, CoT re-
lies on human-written exemplars and reveals lit-
tle about internal computation. We instead pro-
mote the emergence of CoT-like behaviour through
curriculum-induced structure and quantify atten-
tion changes that co-occur with reasoning gains.

4.4 Interpretability of Attention and Neurons

Attention visualisation, probing classifiers, and neu-
ron activation analysis are cornerstones of LLM
interpretability (Zhao et al., 2023). Studies report
counter-intuitive behaviours such as prompt-order
effects in in-context learners (Tefnik and Kadlcik,
2022) and heterogeneous roles for individual heads
(Zheng et al., 2024). Our analysis pipeline adds
layer-wise entropy, sparsity, and distance metrics,
revealing that curricula make heads both more dis-
tributed and more contextually balanced.

4.5 Connections to Human Cognition

Dual-process theories distinguish fast intuitive
(System 1) from slow deliberative (System 2) rea-
soning in humans; whether LLMs exhibit analo-
gous dynamics is still debated (Deng et al., 2024;
Niu et al., 2024). Machine-psychology frameworks
seek common ground by mapping psychological
constructs onto model behaviours (Zheng et al.,



2024). Our training pipeline, aligned with devel-
opmental principles, takes a step toward unifying
these perspectives and provides empirical evidence
that curricular staging encourages deeper-layer spe-
cialization reminiscent of higher-order human rea-
soning.

5 Conclusion

We present Cognivolve, a curriculum-driven train-
ing framework that unlocks human-like reasoning
in GPT-24,1 by staging learning from elemen-
tary lexical tasks to complex symbolic inference.
The syllabus produces orders-of-magnitude more
specialized attention heads, reallocates them into
deeper layers, doubles the diversity of high-level
reasoning circuits, and delivers two-fold faster at-
tainment of non-trivial validation accuracy—all
without increasing model size or compute bud-
get. Attention-map analysis shows that these
gains coincide with richer, more balanced inte-
gration of local and long-range context, while
progressive-specialisation tracking confirms that
early-discovered circuits remain useful throughout
training. Taken together, our results demonstrate
that a structured curricula can substitute for scale,
offering a principled path toward efficient, inter-
pretable small language models.

6 Limitations

One limitation of this work is that we are only
training and analyzing GPT-24y,1 (124 M parame-
ters). The curriculum’s effectiveness may change
as depth and width grow, and extending the syl-
labus to GPT-2ediums 1arge> and x1. would clarify
whether the observed interpretability gains and
sample-efficiency speed-ups scale with capacity
or saturate.

A possible criticism of our setup is the heavy
reliance on a gradient-saliency detector to label
“specialized” attention heads. Saliency is a lossy
proxy: it is sensitive to the probe task, can inflate
counts when accumulated across checkpoints, and
fails altogether in Stage 4 where the curriculum
shifts from numerical to verbal reasoning. Conse-
quently, the absolute head numbers reported here
should be read as relative trends, not as a census of
distinct functional modules.

Further, the experimental corpus is largely syn-
thetic and constrained to short, single-sentence
problems. Although we partition it into four diffi-
culty tiers, the distribution still differs from realis-
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tic benchmarks such as GSM-8K or StrategyQA.
Our positive transfer claims therefore rest on indi-
rect evidence—attention statistics and step-by-step
alignment—rather than direct performance gains
on out-of-domain tasks.

Curriculum ordering could inadvertently leak dif-
ficulty information that is unavailable at test time,
subtly steering the model toward over-fitting to
stage boundaries rather than learning transferable
reasoning skills. A concise diagnostic would be
to randomly interleave 10% of Stage-4 (complex)
problems into each earlier epoch and verify that the
curriculum model’s validation accuracy remains
unchanged. Observing no degradation under this
mixed scheduling would allay concerns that per-
formance gains stem from memorising stage order
rather than genuine skill acquisition.

Finally, while curriculum training halves the up-
dates needed to reach moderate accuracy thresh-
olds, the best end-of-training success rate trails a
conventionally trained baseline by 32 %. We argue
that a brief mixed-stage fine-tune can close this
gap, yet the current study stops short of demon-
strating that reconciliation, leaving open whether
transparency and final accuracy can be achieved
simultaneously without additional compute.
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A Specialized Component Emergence

Table 8 reports, for each circuit archetype, (i)
the final number of distinct specialized compo-
nents discovered in baseline and curriculum train-
ing, (ii) the area under the cumulative—emergence
curve (AUC; smaller values indicate earlier acti-
vation), and (iii) the relative speed-up computed
as W x 100. Positive percentages
denote faster emergence under the curriculum; neg-

ative percentages denote slower emergence.
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Component Count AUC () Sp((ecoa/:l)-up
Base Curric. Base Curric.

Induction heads 383 382 37870 37562 +0.8

Reasoning heads 60 169 4381 12668 —-189.1

Pattern matchers 166 216 13021 19137 -47.0

Table 8: Distinct specialized components and their emer-
gence timing. Lower AUC means earlier discovery;
positive speed-up indicates faster emergence under the
curriculum.

B Attention—Pattern Metrics

For completeness Table 9 restates the four summary
statistics used in Section 3.3. All are computed on
the token—normalised probability simplex A_ij of
a single layer—head” and then averaged first across
tokens and subsequently across validation prompts.

Metric Symbol Formal definition
Sp—3Ag)
. L) _ 2 n 92 k
Sparsity (Gini) G 1-23 ~,Au, a0 , where
Ary are sorted weights and
Sk = Ztgk A(t)~
Entropy H —2_; Aijlog Aij.
2
Local focus L z Aiita-
d=—2
Mean distance D

> li— gl Ay
i

Table 9: Per-head attention statistics (token-normalised
matrix A;;). Lower G is better; the other three improve
when higher (7).

Aggregating over all 24 x 12 heads and 1000
validation prompts yields the means in Table 10.
Relative changes match those reported in the main
text but are reproduced here for convenience.

Metri Baseline Curric. A % Change
etric

Sparsity G | 0.863 0.860 -0.003 -0.37
Entropy H 1 1.054 1.076  +0.022 +2.04
Local focus L1 0.292 0.296  +0.004 +1.37
Distance D 1 8.35 8.75 +0.40 +4.86

Table 10: Mean attention statistics across all 24 x 12
heads (1 000 validation prompts). Positive values are
desirable except for sparsity, which should decrease.

Indices 7 and j denote query and key positions, respec-
tively.
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C Dataset Cleaning Pipeline and Split
Statistics

This appendix details the preprocessing steps
briefly mentioned in §2 and reports the exact size
of every split that was used in training, validation
and evaluation.

C.1 Cleaning Pipeline (deterministic)
1. Unicode normalisation (NFKC) of the raw
JSONL dumped from the Facebook Natural
Reasoning corpus.

. HTML and Markdown stripping via
BeautifulSoup(. . ., "1lxml"), followed
by removal of residual entities with a single
re.sub.

. Sentence splitting of each question using
nltk.sent_tokenize. This output is used
only for the complexity—classifier features; the
model itself sees the original question string.

. Length filter: discard any item whose ques-
tion or answer exceeds 128 byte-pair—encoded
(BPE) tokens under the stock GPT-2 tok-
enizer.

. Complexity labelling by a logistic classifier
trained on 500 hand-annotated examples us-
ing three scalar features (operator density, sen-
tence count, delimiter count). The resulting
class is one of {simple, basic, intermediate,
complex}.

. Balanced 90/10
{train,val}.

split per class into

C.2 Corpus Statistics

# Items Mean BPE Tokens

Val

500
470
380
290

1640

Answer

6.0
6.1
6.1
6.2

6.1

Train

5000
4700
3800
2900

16400

Stage Question

22.7
22.8
22.9
23.0

22.8

Simple
Basic
Intermediate
Complex

Total

Table 11: Instance counts and average BPE length after
cleaning. A separate, disjoint test set of 1 000 items is
used for all reported accuracy numbers in the paper.

Licence. The original Facebook Natural Reason-
ing corpus is distributed under the MIT licence;
our cleaned derivatives inherit the same terms. No
additional copyright or privacy constraints apply.



D Training Hyper-parameters and
Scheduler

All experiments reported in the main paper were
run with a single, frozen set of optimizer and sched-
uler settings. This appendix records those values
so that the training runs can be replicated exactly
from the released code and checkpoints.

D.1 Baseline Scheduler

The no-curriculum baseline trains for two full
passes over the union of all stage partitions with

+ Constant learning rate n = 6.0 x 1075,

* Identical optimizer hyper-parameters (Ta-
ble 13),

* No resets of Adam moments or positional em-
beddings.

D.2 Stage-specific Scheduler

Training uses a cosine decay with a linear warm-up
of 200 updates. The peak learning rate nn,x differs
by stage to compensate for rising task difficulty; all
other scheduler parameters remain fixed.

Stage (difficulty) Nmax Epochs
1 (simple) 1.0 x 107% 1
2 (basic) 7.0 x 107° 1
3 (intermediate) 5.0 x 107° 1
4 (complex) 2.0 x 107° 1

Table 12: Peak learning rate per curriculum stage. Each
stage spans one epoch over its partition (Table 11); the
scheduler state carries over without reset.

D.3 Global Optimizer Settings

Component Value / Description

Optimizer AdamW (Loshchilov and Hutter, 2019)

B1, B2 0.9, 0.999

€ 1x1078

Weight decay 0.01

Gradient accumulation 8 steps (micro-batch = 4 sequences)

Effective batch size 32 sequences (Stages 1-3), 16 sequences (Stage 4)
Gradient clipping £o-norm < 1.0

Mixed precision Disabled (all tensors in fp32)

Table 13: Run-level optimizer configuration used for
every curriculum stage and for the single-phase baseline.
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