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ABSTRACT

On-policy knowledge distillation trains a compact student language model on its own generated
trajectories, reducing train-inference mismatch, but it is expensive because the teacher must score
every generated token. We propose FORKDISTILL, a sparse token supervision method that reduces
teacher computation by querying the teacher only at a small subset of token positions. Given a student
rollout, ForkDistill assigns each position an uncertainty score (predictive entropy or logit margin),
selects approximately a target coverage of tokens, adds a small guard prefix and suffix, and applies
inverse-probability weights to correct for token subsampling. We distill a Gemma 3 1B student
from a Gemma 3 4B instruction-tuned teacher using LoRA and evaluate on short-answer question
answering. In a coverage sweep on SciQ, ForkDistill reduces teacher-scored tokens from 128 to 12
per example at 10% coverage (10.7× fewer queries) while maintaining a competitive distillation
objective. At an equal 10% query budget, entropy gating yields a 25% lower final loss than random
selection, indicating that supervising high-uncertainty forking points is especially beneficial in the
low-coverage regime. Overall, sparse token-level teacher queries provide a simple and effective knob
for scaling on-policy distillation under constrained teacher compute.

1 Introduction

Large language models (LLMs) enable strong instruction following and reasoning, but their inference and training
costs often prevent deployment in latency- and memory-constrained settings such as edge or on-device applications
[1, 2, 3, 4, 5]. A common approach to close this capability gap is knowledge distillation (KD), where a smaller student
model is trained to imitate a larger teacher [6, 7, 8, 9]. For LLMs, distillation has been explored in both black-box
settings that rely only on teacher outputs and in more direct distribution-matching regimes that use teacher probabilities
as soft supervision [10, 11, 12].

A major challenge in modern LLM distillation is teacher compute. Many effective recipes supervise the student at the
token level, which can require teacher scoring for each generated token and can dominate runtime when the teacher
is large [13, 12, 14]. This issue becomes particularly acute in on-policy distillation, where the student learns from
its own generated trajectories to reduce training-inference mismatch and exposure bias [15]. On-policy supervision
improves robustness, but it increases the number of teacher queries because teacher feedback must be produced on
student-generated prefixes rather than a fixed dataset.

Recent work addresses this cost through more compute-aware distillation pipelines. Speculative knowledge distillation
interleaves student sampling with teacher verification to reduce wasted teacher computation [16, 17]. Other approaches
adaptively mix generation sources or supervision modes to trade off stability and cost [18, 19]. In parallel, a growing line
of token-adaptive and selective distillation methods argues that not all tokens contribute equally to learning, motivating
token reweighting, gating, or pruning mechanisms [20, 21, 22, 23, 24].

In this project, we ask: can we reduce teacher supervision to a small fraction of tokens while preserving distillation
quality? We propose ForkDistill, a sparse token supervision method for on-policy distillation. ForkDistill selects a
subset of generated tokens for teacher scoring using lightweight heuristics (uncertainty-based or random) and applies
inverse-probability importance weights so that sparse supervision remains a principled estimator of dense supervision
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[25, 26, 27]. Empirically, we show that supervising as little as 10% of tokens can match dense supervision on short-form
question answering benchmark while substantially reducing the number of teacher-scored positions.

2 Background and Related Work

2.1 Knowledge distillation for language models

Distillation has a long history in NLP, including sequence-level distillation for generation [28] and transformer
compression pipelines such as patient knowledge distillation and compact pretrained students [29, 30]. With the rise of
LLMs, KD has been revisited as a central mechanism for compressing instruction-following models and transferring
capabilities from large teachers to smaller students [6, 7, 8, 9]. Surveys highlight KD as complementary to other
efficiency techniques such as pruning, quantization, and efficient inference systems [31, 14].

Modern LLM distillation spans several supervision modalities. Black-box distillation uses only teacher outputs or
preferences, which is especially relevant when the teacher is accessible only through an API [10, 11]. Other methods
emphasize representation transfer and feature alignment between teacher and student, seeking to match intermediate
representations in addition to outputs [32, 33]. Distillation can also be performed across heterogeneous tokenizers or
vocabularies, motivating cross-tokenizer and token-alignment approaches [34, 35, 36]. Multi-teacher and multilingual
settings further extend the teacher-student framework [37, 38]. Industrial-scale practice reports describe end-to-end
distillation recipes and deployment constraints [39].

2.2 Distillation objectives and KL divergence variants

A common family of objectives aligns teacher and student next-token distributions using KL divergence or closely
related losses [12, 40]. Forward KL objectives encourage mode-covering behavior, while reverse KL encourages
mode-seeking behavior, which can be beneficial for instruction-following or preference-aligned generation [41, 12].
Several works study stability and calibration of distillation for autoregressive LMs, motivating alternative targets or
divergence control mechanisms [42, 43, 44]. Distillation objectives also interact with downstream generation regimes
and evaluation metrics, including summarization-style settings where objective choice can influence factuality and
coverage [45]. For heavily compressed students, self-distillation and low-bit regimes introduce additional constraints
on objective design [46].

2.3 On-policy distillation and interactive teacher-student training

On-policy distillation addresses the mismatch between training trajectories and student inference trajectories by querying
the teacher on student-generated outputs [15]. This framing naturally connects KD to imitation learning and policy
optimization, where training signal is collected on trajectories induced by the current policy [26]. However, on-policy
schemes can be expensive because the teacher may be queried repeatedly during generation.

To reduce this overhead, recent work explores interleaved sampling and verification strategies, including speculative KD
and draft-model training for speculative decoding [16, 17]. Adaptive switching methods dynamically mix supervision
sources or generation modes to balance quality and cost [18]. More broadly, collaborative edge-cloud training
perspectives study how small on-device models can interact with cloud-scale teachers [47, 1, 2]. Interactive feedback
and iterative refinement also appear in distillation for difficult reasoning tasks [48, 49, 50].

2.4 Reasoning transfer and chain-of-thought distillation

Distillation can transfer more than final answers. Chain-of-thought prompting shows that LLMs can produce inter-
mediate reasoning steps that improve task performance [51]. A line of work distills such step-by-step rationales into
smaller students, improving reasoning with less data or smaller model sizes [52, 53, 54]. Data-centric benchmark
and reweighting methods further analyze which rationales are most helpful and how to control variance in rationale
supervision [55, 56]. Beyond standalone QA, distillation has also been applied to sequential recommendation and other
domains where rationales provide structured supervision [57, 58, 59]. Agentic and tool-augmented settings motivate
distilling trajectories that mix reasoning with actions such as retrieval and code execution [60, 61, 62, 63].

2.5 Token-level supervision, selection, and efficiency

Token-level distillation can be more effective than sentence-level objectives in certain regimes, especially for smaller
students and simpler text settings [13]. Many recent methods therefore study token-wise selection or weighting to
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Figure 1: FORKDISTILL overview (sparse on-policy distillation). Given a prompt x, the student generates an on-policy
continuation y1:T and computes token-wise uncertainty scores st from its predictive distribution. A token gate selects
a sparse supervision mask m1:T by choosing approximately k ≈ cT high-uncertainty positions (entropy or margin),
while always including a small prefix and suffix guard region. The teacher is queried only at positions with mt = 1 to
score the realized token under the corresponding prefix ht = (x, y<t) (e.g., returning log pT (yt | ht)). The student is
updated using a masked objective (optionally inverse-probability weighted via mt/πt when gating is stochastic), and
only the student LoRA parameters are trained while the teacher remains frozen; the callout highlights the resulting
reduction in teacher-scored tokens at low coverage (e.g., 128→12 at c=10%).

prioritize informative positions and suppress redundant gradients. Examples include token-level relationship modeling
[64], selective token-weighted KD [21], token-adaptive KD [20], calibration-driven gating [22], and multi-granularity
semantic revision [19]. Related efficiency mechanisms appear in token routing and pruning, which skip computation
on low-utility tokens during inference or training [65, 66, 67, 68]. Sampling and generation strategies also influence
distillation data quality, including cautionary findings about degeneration and mitigation via sampling constraints
[69, 70].

Token selection and prioritization are also studied in multimodal distillation and pretraining, where focusing on salient
tokens can improve efficiency [71, 72, 73, 74]. Application-specific distillation frameworks incorporate explainability
or structured signals, such as e-commerce relevance distillation [75]. Finally, domain- or language-specific pretraining
choices can alter what knowledge is easiest to compress into small models [76].

2.6 Importance weighting and uncertainty-based token selection

ForkDistill is closely related to importance sampling and reweighting methods that reduce training cost while preserving
correct expectations. Importance sampling has been used to accelerate deep learning by prioritizing high-utility samples
[25] and appears broadly in stochastic optimization and policy learning [26, 27]. For language modeling, estimating
or emphasizing rare or high-uncertainty events is often beneficial [77]. Entropy and uncertainty are frequently used
as token-level difficulty signals, motivating weighted entropy fine-tuning and risk-aware selective language modeling
[24, 23]. Other reweighting perspectives include token-level guidance for fine-tuning and group-based objectives for
stable supervised adaptation [78, 79]. Entropy regularization is also a standard tool for encouraging exploration and
controlling collapse in policy learning settings [80, 81].

3
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3 Method

3.1 Setup and notation

Let x denote an input prompt (e.g., a question) and let y1:T denote the student-generated continuation of length T
tokens, where yt ∈ V and V is the vocabulary. We write the prefix at time t as ht ≜ (x, y<t).

We consider a student language model with token-level conditional distribution

pS(yt | ht) ≜ pS(yt | x, y<t), (1)

and a fixed teacher model with
pT (yt | ht) ≜ pT (yt | x, y<t). (2)

On-policy distillation means the trajectory is generated by the student decoding policy,

yt ∼ πS(· | ht), (3)

where πS may be sampling or greedy decoding derived from pS . Throughout training, the teacher parameters remain
frozen, while the student is updated via parameter-efficient fine-tuning (LoRA).

Teacher query cost. Our primary efficiency metric is the number of teacher-scored tokens, defined as the count of
token positions for which we compute teacher supervision (either a scalar log-probability or a full logit distribution).
Formally, for a binary supervision mask m1:T ∈ {0, 1}T (defined below), the teacher query cost for one generated
sequence is

Q(x, y1:T ) ≜
T∑

t=1

mt. (4)

This metric directly reflects how many token positions require teacher computation and is the quantity we reduce. We
report runtime only when explicitly measured.

3.2 Dense baseline objective

ForkDistill approximates a dense token-level distillation objective with sparse teacher supervision. We first define a
per-token loss ℓt and then average it over all generated tokens.

(A) Realized-token scoring. In settings where the teacher interface naturally provides only the log-probability of the
realized student token,

log pT (yt | ht), (5)

we define a teacher-weighted negative log-likelihood objective on the student token:

ℓSCORE
t ≜ −αt log pS(yt | ht), αt ≜ pT (yt | ht). (6)

Intuitively, the teacher confidence αt modulates the magnitude of the student update, emphasizing positions where the
teacher strongly endorses the realized token. This supervision requires only a single scalar from the teacher per queried
position.

(B) Full distribution distillation. When teacher logits (or distributions) are available, we distill using a divergence
between teacher and student token distributions at each prefix. Let zS,t ∈ R|V| and zT,t ∈ R|V| denote student and
teacher logits at prefix ht. With temperature τ > 0, define softened distributions

p
(τ)
S (· | ht) ≜ softmax

(zS,t
τ

)
, p

(τ)
T (· | ht) ≜ softmax

(zT,t

τ

)
. (7)

We consider the standard forward KL (teacher to student),

ℓKL
t ≜ τ2 KL

(
p
(τ)
T (· | ht) ∥ p(τ)S (· | ht)

)
, (8)

and we can analogously use reverse KL if desired by swapping the arguments. This supervision requires teacher logits
at queried positions.
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Dense objective. Given a choice of ℓt ∈ {ℓSCORE
t , ℓKL

t }, the dense baseline loss over the student-generated continuation
is

LDENSE(x) ≜
1

T

T∑
t=1

ℓt. (9)

3.3 ForkDistill: sparse token supervision with a mask

ForkDistill reduces teacher queries by supervising only a subset of token positions. Let mt ∈ {0, 1} denote whether
token position t is teacher-supervised:

mt =

{
1 query the teacher and include token t in the loss,
0 skip teacher supervision at token t.

(10)

We define a target coverage c ∈ (0, 1] and the realized coverage

ĉ(x, y1:T ) ≜
1

T

T∑
t=1

mt, (11)

which is the quantity we report. In practice, guard tokens (Section 3.5) can cause ĉ to slightly exceed the nominal target
c.

3.4 Token selection strategies (gating)

ForkDistill constructs m1:T by first computing a scalar score st at each position from the student predictive distribution,
then selecting approximately k ≈ cT positions for supervision (excluding guard tokens).

Let pS(· | ht) be the student distribution at prefix ht and let zS,t be the student logits at that position. We consider the
following scoring functions:

• Entropy:
st ≜ H(pS(· | ht)) = −

∑
v∈V

pS(v | ht) log pS(v | ht). (12)

High entropy indicates local uncertainty and corresponds to potential “forking points”.

• Margin (logit ambiguity): let z(1)S,t ≥ z
(2)
S,t be the top-1 and top-2 logits in zS,t, then

st ≜ −
(
z
(1)
S,t − z

(2)
S,t

)
. (13)

A small top-1 minus top-2 margin yields a high score, indicating ambiguity.
• Random:

st ∼ U(0, 1), (14)
which serves as a simple baseline for selection.

Mapping scores to a mask. Let I be the set of non-guard positions (Section 3.5). A common deterministic
instantiation selects the top-k positions by score:

S ≜ TopK
(
{st}t∈I , k

)
, mt ← I[t ∈ S] for t ∈ I. (15)

Alternatively, one may use stochastic sampling with per-token selection probability πt (defined below), which enables
inverse-probability weighting with exact unbiasedness guarantees.

3.5 Guard tokens

To stabilize generation and ensure that supervision covers crucial boundary regions, we always supervise a small number
of prefix and suffix tokens in the generated continuation.

Let kPRE ≥ 0 and kSUF ≥ 0 denote the guard lengths. We set

mt ← 1 for t ∈ {1, . . . ,min(kPRE, T )} ∪ {max(1, T − kSUF + 1), . . . , T}. (16)

The prefix guard stabilizes early decoding decisions (where errors can cascade), and the suffix guard increases the
chance that the final answer region is teacher-supervised, which is especially important for short-form QA outputs.

5
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Algorithm 1 ForkDistill (single training step)
Input: prompt x, target coverage c, guards (kPRE, kSUF), student S, teacher T

1: Sample a student trajectory y1:T ∼ πS(· | x) ▷ on-policy decoding
2: for t = 1 to T do
3: Form prefix ht ← (x, y<t)
4: Compute student logits zS,t and distribution pS(· | ht)
5: Compute score st ← Score(pS(· | ht)) (entropy, margin, or random)
6: end for
7: Initialize mask m1:T ← 0
8: Apply guard tokens mt ← 1 for prefix and suffix positions as in Eq. (16)
9: Select approximately cT additional non-guard positions with highest st and set mt ← 1

10: for each t with mt = 1 do
11: Query teacher to obtain supervision at ht (log-probs or logits)
12: Compute per-token loss ℓt (e.g., Eq. (6) or Eq. (8))
13: Set weight wt ← mt/πt (if stochastic gating; otherwise wt ← 1)
14: end for
15: Form sparse objective LSPARSE(x) as in Eq. (18)
16: Update student parameters (LoRA) using ∇LSPARSE(x); keep teacher parameters fixed

3.6 Importance weighting for subsampled tokens

Naively optimizing the masked objective
∑

t mtℓt biases learning toward the selected positions. To correct for this, we
use inverse-probability weighting over token positions, a standard technique in importance sampling [25, 26].

Assume the mask is sampled such that each token position t has a known selection probability πt ∈ (0, 1] (conditioned
on the realized sequence and gating procedure). Define the weight

wt ≜
mt

πt
. (17)

ForkDistill then optimizes the weighted sparse objective

LSPARSE(x) ≜
1∑T

t=1 mt

T∑
t=1

wt ℓt. (18)

When gating is stochastic and πt matches the true sampling probabilities, the inverse-probability correction yields an
unbiased estimate of the dense token-average up to the normalization constant (and becomes exactly unbiased if one
replaces the denominator

∑
t mt with T ). For deterministic top-k selection, πt is not defined as a marginal probability,

so the estimator is only approximate; in practice, we set πt = 1 on selected positions and still observe stable learning.

3.7 ForkDistill algorithm

Algorithm 1 summarizes one training step.

3.8 Cost analysis

Let T be the number of generated tokens per example. Dense distillation requires teacher supervision at every position,
giving QDENSE = T teacher-scored tokens. ForkDistill reduces this to

QSPARSE =

T∑
t=1

mt = ĉ T, (19)

so the teacher query reduction factor is approximately T/QSPARSE ≈ 1/ĉ. Crucially, the student forward pass and
sequence generation still process all T tokens; ForkDistill specifically reduces the amount of teacher supervision
required. Prompt processing overhead is separate from per-token teacher scoring and is unchanged by token masking.

6
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Table 1: Dataset used in our evaluation.

Dataset Output type Notes

SciQ short text science QA with short factual answers

Table 2: Training configuration (main runs).

Setting Value

Student / Teacher Gemma 3 1B (PT) / Gemma 3 4B (IT)
Fine-tuning LoRA (r = 32, α = 32)
Optimizer AdamW
Learning rate 2× 10−4

Steps 200
Batch size 1
Max new tokens Tmax 128
Gradient clipping 1.0

4 Experimental Setup

4.1 Models and parameter-efficient fine-tuning

We distill from a larger teacher language model into a smaller student model. Unless stated otherwise, our student is
Gemma 3 1B (pretrained) and our teacher is Gemma 3 4B (instruction-tuned), both loaded in bfloat16. We keep the
teacher frozen throughout training and only update a low-rank adaptation (LoRA) on top of the student. Following
standard practice for transformer adaptation, we apply LoRA to the attention projection matrices and MLP projections
(e.g., q_proj,k_proj,v_proj,o_proj,gate_proj,up_proj,down_proj) with rank r = 32 and scaling α = 32.

4.2 Dataset (SciQ)

We evaluate FORKDISTILL on SciQ, a science question answering dataset with short factual answers. We treat SciQ as
a collection of (question, answer) pairs. During training, we sample prompts from the SciQ training split for on-policy
rollouts, and we use a held-out split for periodic monitoring.

4.3 Prompt format and decoding

We use a single prompt template:

Question: {question}
Answer:

During training, the student generates answers autoregressively using its decoding policy (on-policy rollouts). We cap
generations to Tmax = 128 new tokens and enforce a small minimum generation length to reduce degenerate early
termination. During evaluation/monitoring, we use deterministic greedy decoding (argmax) with the same maximum
generation length.

4.4 Training procedure and hyperparameters

We train with on-policy rollouts: each step samples a SciQ example, runs student generation, and then computes a
distillation loss using teacher supervision at selected token positions (Section 3). We optimize only the LoRA parameters
using AdamW. In our main runs we use 200 optimization steps, batch size 1, and a learning rate of 2× 10−4. We clip
the gradient norm to 1.0. We monitor training by tracking the distillation objective value (Loss) and teacher query cost,
and we report final results in Section 5. All experiments use a single random seed under this small compute budget, so
results should be interpreted as a proof of concept rather than a large-scale study.

4.5 ForkDistill settings, baselines, and ablations

We sweep target token coverage c ∈ {1.0, 0.5, 0.3, 0.2, 0.1}, where c = 1.0 corresponds to dense supervision. For
sparse runs, we compare multiple gating strategies at matched coverage, including entropy-based selection and random

7



CS 599 E1: ALGORITHMS FOR MACHINE LEARNING, PROJECT FINAL REPORT

Table 3: Teacher query reduction via sparse token supervision. “Teacher Queries” counts teacher-scored token positions
per example. “Loss” is the final distillation objective value (lower is better). “Reduction” is computed against the dense
baseline.

Method Coverage (%) Teacher Queries Loss ↓ Reduction

Dense Baseline 100 128.0 4.037 1.00×
FORKDISTILL (entropy) 50 64.0 1.547 2.00×
FORKDISTILL (entropy) 30 38.0 5.999 3.37×
FORKDISTILL (entropy) 20 25.0 5.540 5.12×
FORKDISTILL (entropy) 10 12.0 3.214 10.67×
Random (10% coverage) 10 12.0 4.305 10.67×

selection. We include a small set of guard tokens by always supervising a prefix (kpre = 4) and a suffix (ksuf = 1)
of each generated response. Unless otherwise stated, our sweep uses deterministic top-k gating at each example
(i.e., non-stochastic selection), so selected and guard tokens have πt = 1 and inverse-probability weights reduce to
wt = 1 (Eq. (17)), yielding a self-normalized masked average. We enable inverse-probability weighting as a principled
correction only when using stochastic gating with explicit per-token selection probabilities.

4.6 Metrics and efficiency accounting

Our primary quality metric in this report is the final value of the distillation objective (Loss), computed over teacher-
supervised token positions as described in Section 3. For efficiency, we report teacher query cost as the number of
teacher-scored token positions per rollout, along with realized coverage ĉ (Eq. (11)), which accounts for guard tokens
and rounding effects. (We also implemented answer-extraction evaluation for sanity checks, but we focus on the
distillation objective here.)

5 Results

We present a proof-of-concept evaluation of FORKDISTILL that isolates the core claim: sparse, token-level teacher
supervision can substantially reduce teacher query cost while preserving (and sometimes improving) the on-policy
distillation objective. Across runs we keep the model pair, optimization settings, and training budget fixed, and vary only
(i) the supervision coverage and (ii) the token selection rule. Unless stated otherwise, Loss refers to the realized-token
distillation objective using teacher log-prob scoring (Eq. (6)) aggregated with the sparse masked average in Eq. (18);
we use entropy gating with guards (kPRE, kSUF) = (4, 1).

5.1 Main results: cost–quality tradeoff

Table 3 summarizes the teacher query cost and final distillation loss for a sweep over realized coverage ĉ. Here, teacher
queries denotes the number of teacher-scored token positions per example, i.e.,

∑T
t=1 mt, averaged across the run. The

reduction is computed relative to the dense baseline (100% coverage). Lower loss is better.

Two trends stand out. First, FORKDISTILL provides a direct and predictable handle on teacher cost: reducing coverage
from 100% to 10% decreases teacher queries from 128 to 12 tokens per example, a 10.67× reduction. Second, sparse
supervision need not degrade optimization. At 10% coverage, entropy-gated FORKDISTILL attains a loss of 3.214,
which is slightly lower than the dense baseline (4.037) despite using an order of magnitude fewer teacher-scored tokens.

5.2 Entropy gating matters at fixed teacher budget

A key question is whether improvements are purely a consequence of using fewer teacher-scored tokens, or whether
which tokens are supervised matters. Table 3 includes a matched-budget comparison at 10% coverage: both entropy
gating and random gating use the same teacher query count (12.0 tokens per example), but entropy gating achieves
substantially lower loss (3.214 vs. 4.305). This corresponds to a relative reduction of approximately 25% in loss at
equal teacher cost:

4.305− 3.214

4.305
≈ 0.253.

This gap supports the interpretation that sparse supervision is not only a compute-saving mechanism, but can also
be a sample-efficient allocation of teacher signal. In particular, entropy gating preferentially spends teacher queries

8
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on positions where the student is most uncertain, which are also the positions most likely to benefit from corrective
supervision.

5.3 Moderate sparsity can outperform dense supervision

Interestingly, 50% coverage yields the best loss in this sweep, improving substantially over the dense baseline (1.547 vs.
4.037) while halving teacher queries. One plausible explanation is that dense token-level supervision spends significant
capacity on low-entropy positions where the student already agrees with the teacher, contributing little incremental
learning signal. By concentrating supervision on higher-uncertainty positions (while still retaining guard tokens),
FORKDISTILL emphasizes informative corrections and can reduce gradient noise from redundant tokens. We view this
non-monotonic behavior as a promising signal that there exists a regime where sparse token supervision is not merely
cheaper, but also better targeted.

5.4 Takeaway

Overall, these results validate the core premise of FORKDISTILL: substantial teacher query reductions are achievable
without sacrificing the distillation objective, and entropy-based token selection provides a meaningful advantage over
random selection at the same teacher budget. This evidence supports sparse token-level supervision as a practical knob
for scaling on-policy distillation under constrained teacher compute.

6 Discussion and Limitations

6.1 Why sparse supervision works in our regime

ForkDistill is motivated by a simple inefficiency in on-policy distillation: dense token-level supervision repeatedly
queries the teacher at positions where the student is already confident and locally correct, yielding little incremental
learning signal per unit teacher compute. In short-answer question answering, many generated tokens correspond to
boilerplate structure, predictable continuations, or high-probability surface forms. Supervising such tokens densely can
be wasteful because their gradients are small and often redundant, while the optimization budget is dominated by a
comparatively small set of high-impact decisions where the student is uncertain, ambiguous alternatives exist, or early
mistakes would otherwise be reinforced by on-policy sampling. This perspective is consistent with prior observations
that token difficulty is highly non-uniform, and that uniform allocation of supervision can dilute computation on
low-signal positions [20].

Our empirical sweep supports this mechanism. When we reduce teacher supervision from dense scoring to sparse
scoring, the number of teacher-scored token positions decreases proportionally with coverage, yet the distillation
objective does not degrade monotonically and can even improve at intermediate sparsity. In particular, supervising an
informative subset of tokens can act as a regularizer by avoiding over-constraining the student on easy positions, thereby
concentrating updates on the parts of the trajectory that most strongly shape downstream behavior under on-policy
generation. Guard tokens further stabilize this regime by ensuring that training retains consistent supervision near
the beginning of generation, where distributional shift is most pronounced, and near the end of generation, where
short-answer correctness is typically determined.

6.2 Entropy gating helps at low coverage

A central finding is that token selection matters most when the supervision budget is extremely constrained. At 10%
coverage, entropy-based gating achieves a substantially lower final loss than random selection at the same teacher query
budget, with losses of 3.214 and 4.305 respectively in our SciQ setting. This corresponds to approximately a 25%
reduction in loss at fixed teacher-scored tokens, indicating that allocating supervision to high-uncertainty positions
better concentrates learning on points where the student distribution diverges most from the teacher and where corrective
gradients are largest.

We also observe that moderate sparsity can outperform dense supervision in terms of the distillation objective, for
example when 50% coverage yields a lower loss than the dense baseline in our sweep. A plausible explanation is
that dense token-level supervision overemphasizes low-entropy tokens, including formatting and locally deterministic
continuations, which can inject optimization noise and reduce the effective step size devoted to genuinely informative
corrections. Entropy gating implicitly prioritizes positions with higher expected gradient contribution, connecting to
importance-aware training and selective sampling ideas studied in the importance sampling and reweighting literature
[25, 26].

9
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6.3 When token selection should matter more

While entropy gating already improves efficiency in short-answer settings, we expect its advantage to increase in regimes
where informative tokens are rarer relative to sequence length. In long-form generation and multi-step reasoning, a small
fraction of tokens often determines correctness, such as key intermediate commitments or final decisive statements,
which makes targeted supervision more valuable. In code and math, errors can concentrate on sparse critical tokens
including operators, variable identifiers, boundary conditions, or punctuation that alters semantics, so supervising
high-uncertainty or high-sensitivity positions should deliver a larger gain per teacher query. Token selection should
also matter more when the student is weaker or the teacher-student gap is larger, because uncertainty tends to correlate
more strongly with genuine errors, and when coverage is pushed to very small values, since random selection becomes
increasingly likely to miss the few tokens that govern downstream behavior. These hypotheses align with recent
approaches that modulate supervision based on token difficulty, confidence, or adaptive criteria [44, 21].

6.4 Limitations and threats to validity

First, our primary efficiency metric is the number of teacher-scored token positions, which corresponds directly to
query cost in settings where teacher scoring is implemented as an external service or black-box call per token position.
However, teacher-scored tokens do not automatically translate into proportional wall-clock savings when the teacher
runs locally and can exploit batching, caching, or fused kernels. The realized speedup depends on the deployment
architecture, prompt reuse, and whether per-token scoring is the dominant cost.

Second, we use the distillation objective value as a primary proxy for learning progress in this proof-of-concept.
Although lower loss is desirable and often correlates with improved student behavior, it is not guaranteed to translate
monotonically into downstream accuracy on every task. Stronger claims require comprehensive benchmark evaluation,
careful answer extraction, and statistical testing with sufficient sample sizes, particularly when measured differences are
modest.

Third, our current experiments focus on short-answer QA with relatively short generations, which may hide failure
modes that emerge in longer sequences, including error compounding, exposure bias under aggressive subsampling, and
increased sensitivity to selection bias. In addition, inverse-probability weighting admits clean unbiasedness guarantees
under stochastic sampling with correctly specified selection probabilities, whereas deterministic top-k selection only
supports approximate interpretations. Self-normalized weighting can also introduce a bias-variance tradeoff, and
extreme sparsity can increase gradient variance if selected positions are highly concentrated.

Finally, our results are based on a single student-teacher pair, a fixed LoRA configuration, and a particular decoding
policy. Different model scales, alternative adapter targets, or changes in sampling temperature may shift the operating
point and alter the relative benefit of entropy gating versus simpler strategies.

7 Conclusion

On-policy knowledge distillation is attractive because it trains the student on its own generated trajectories, but it
is often prohibitively expensive because standard formulations require teacher supervision at every generated token
position. ForkDistill reduces this cost by supervising only a subset of generated tokens, selected via a gating mechanism,
while preserving stable learning through simple stabilizers and, when applicable, importance weighting to correct for
subsampling. In our proof-of-concept experiments, sparse supervision yields large reductions in teacher-scored tokens
and remains effective across a range of coverage levels, with entropy-based selection providing a clear advantage over
random selection in the most constrained regime. These findings suggest that much of dense token-level supervision is
redundant in short-answer settings, and that allocating limited teacher queries to high-uncertainty forking points can
substantially improve the efficiency of on-policy distillation.
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