A Systematic Comparison of Test-time Task Learning
from Rules vs. Examples

Scaling of # Examples

Increasing the # of examples helps some tasks, but not all. In base
models, too many examples can even lead to a large drop.
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® [nstruction-tuned models learn better from rules, base models learn better

from examples, and both models do best with both kinds of information
(hybrid learning).

Task Complexity

® Model scaling helps rule-based learning in both base and instruction-tuned based and hybrid learning, but not for rule-based learning.
models, and helps example-based learning in base models (although the Rules Examples Hybrid
effect varies depending on model family). 0 e 150 ) <>

e Scaling the # of examples does sometimes help in example-based learning, 3;60 60 60 ' \\ .
but in base models, they show diminishing returns after a certain point. N // = I

® Tasks with more rules negatively affects performance in example-based 2 / L m o w
and hybrid learning, but not in rule-based learning. T YTy v T T
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Tasks described by more rules are more challenging for example-
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