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Abstract

We present The Impostor Game, a controlled social-deduction benchmark for evalu-
ating interactive social reasoning in large language models (LLMs) via multi-agent
play. In each four-player game, three agents share a majority word and one agent
receives a related impostor word; agents describe their words and then vote to
identify the impostor. Across 90,720 games (9 models, 5 modes), vote-network
position best explains realized power: centrality/brokerage track influence, and
coalition efficiency increases with centrality (r ≈ 0.87). Performance varies sub-
stantially (impostor win 27.8–69.0%), and recognition (detection accuracy) shows
a positive cross-model trend with outcomes (r ≈ 0.61, p = 0.17). Speaking order
is randomized: a pseudo-arm ITT shows middle/late speaking modestly reduces
impostor odds (−1.11 pp, 95% CI [−1.64, −0.55]); seat-index contrasts are de-
scriptive. Despite more information, team-aware underperforms team-blind. These
results indicate that interaction signals, including votes, outcomes, and the topology
of the voting network, reveal limitations in social reasoning and coordination that
are not captured by single-agent evaluations.

1 Introduction

Current evaluation protocols for large language models are dominated by single-agent benchmarks that
target declarative knowledge, program synthesis, and mathematical problem solving—exemplified by
MMLU, HumanEval, and GSM8K [22, 38]—whereas many real-world deployments are inherently
interactive, requiring agents to model others’ beliefs and objectives, communicate strategically,
and make decisions under asymmetric information. Recent studies question whether high scores
on static theory-of-mind (ToM) assessments generalize to such interactive settings [10, 26, 21],
underscoring the need for benchmarks that prioritize multi-agent social reasoning. Social-deduction
games instantiate this need in a well-studied hidden-role format: a brief description phase followed
by a vote under limited communication, with an uninformed majority facing an informed minority
(Werewolf/Mafia; Among Us) [9, 11, 33, 19]. These settings disentangle deceptive production
from detection and coordinated voting and expose order- and network-level dynamics in coalition
formation [6, 13, 20].

We present The Impostor Game, a controlled four-player social-deduction benchmark for evaluating
LLMs. In each episode, three agents receive a shared majority word, while a fourth agent (the
impostor) is assigned a distinct word. Agents first produce concise natural-language descriptions and
then cast simultaneous votes to identify the impostor. The impostor may alternatively self-declare;
a declaration is successful only if the impostor correctly infers the majority word. The framework
supports homogeneous, cross-play, and team-aware/semi-aware configurations, with word pairs
stratified by semantic proximity to modulate difficulty. An open orchestration and analysis suite
records complete interaction traces and computes interaction-level metrics from ballots, outcomes,
telemetry, and the induced vote-network topology.
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2 Methods

Task Design. Four agents receive word assignments: three share a majority word wm, one receives a
semantically related impostor word wi. Agents provide descriptions in randomized speaking order
(positions 0–3, uniformly shuffled per game) without revealing their words directly, then vote to
identify the impostor. Majority wins if correctly identifying the impostor; impostor wins if avoiding
impostor detection or creating a tie. If the impostor self-declares, they must also correctly guess the
majority word to win.

Positions vs seats. Speaking position is the randomized within-game order; seat index is a fixed
player label used only for descriptive summaries. All policy/ITT analyses use speaking position.

Setup. We use 300 difficulty-stratified word pairs (Easy–Expert), five assignment regimes (homo-
geneous, cross-play, team-blind/aware/semi-aware), and nine models, evaluated under a unified
runner across 756 experiments (90,720 games). Prompts, orchestration, and hyperparameters are in
Appendix A.

Metrics. We report detection accuracy, impostor win rate, self-declaration/guess success, and
coalition efficiency. Vote-alignment graphs yield centrality/brokerage and influence reach; these
network measures are treated as correlational. Definitions/aggregation are in Appendix C.

Statistics. We report odds ratios (Wald CIs); mode contrasts additionally use experiment-level block
bootstrap and permutation checks. Speaking-order randomization enables a pseudo-arm ITT for a
pin-middle policy (Appendix B.3). Cross-model correlations span 9 models and are reported only
as descriptive (Pearson/Spearman) and suggestive. We foreground within-model × within-difficulty
analyses that leverage thousands of games (e.g., opponent-baseline logits with cluster-robust SEs by
experiment_id); multiple comparisons use BH–FDR (Appendix B).

Balance. b = 1− |2 pimp − 1| summarizes game symmetry (Appendix C).

3 Results

Table 1: Headline results with interaction-only metrics. Percentages ± 95% binomial CIs. Denom-
inators differ: Imp Win (%) is computed over games where the model is the impostor; Maj Win
(%) is computed over games where the model is in the majority (columns need not sum to 100%).
Detection accuracy is computed from majority-player votes. Vote-network centrality (rel. index) and
vote-alignment reach (out-degree) are vote-network indices; CoalitionEff is coalition conversion rate
conditional on formation: #{games with a coalition that converts}/#{games with a coalition}.

Model Imp
Win (%)

Maj
Win (%)

Det
Acc (%)

Centrality
(rel.)

Reach
(out-degree)

CoalEff
(%)

GPT-4o 69.0±0.9 58.2±0.7 77.0±0.7 1.313 0.657 71.6
Claude-Sonnet-4 53.9±1.0 42.6±0.7 51.1±0.8 0.843 0.422 48.0
DeepSeek-v3 48.6±1.0 61.1±0.7 68.7±0.7 1.178 0.589 68.5
Llama-4-Maverick 50.6±1.0 56.6±0.7 65.0±0.7 1.123 0.562 62.5
Llama-4-Scout 41.3±1.0 56.8±0.7 60.8±0.8 1.111 0.556 60.7
Llama-3.1-70B 38.0±0.9 61.5±0.7 65.2±0.7 1.175 0.587 63.6
GPT-3.5-Turbo 35.7±0.9 58.2±0.7 55.5±0.8 1.020 0.510 61.6
Llama-3.1-405B 27.8±0.9 62.6±0.7 59.8±0.8 1.050 0.525 63.9
Llama-3.1-8B 30.4±0.9 46.8±0.7 34.3±0.7 0.650 0.325 53.6

We present four sets of results based on votes, outcomes, telemetry, and vote-network topology: (i)
model heterogeneity and headline numbers; (ii) brokerage and power; (iii) recognition dominates
production; and (iv) an information/coordination paradox with position effects.

3.1 Model Heterogeneity

Across 90,720 games, models exhibit pronounced heterogeneity in interactive success: impostor
win rates (over games where the model is the impostor) range from 27.8% to 69.0%, and detection
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Table 2: Key effects (Position = seat index; speaking-order ITT reported in Appendix): odds ratios
(OR) with 95% Wald CIs and Wald p-values. Model size effect per 10× parameters; seat index rows
are descriptive contrasts (Seat 1/2/3 vs Seat 0); modes relative to homogeneous. Speaking-order
(randomized) effects are reported in Appendix B.3. Note: experiment-level block bootstrap CIs
for mode include 1 (Appendix B.2). Note: size partly proxies provider/post-training; provider-FE
attenuates the slope (Appendix J).

Comparison OR CI (2.5%) CI (97.5%) p

Model size (per 10×) 1.71 1.67 1.75 <10−300

Seat 1 vs Seat 0 1.12 1.08 1.16 6.82× 10−9

Seat 2 vs Seat 0 1.26 1.21 1.31 2.40× 10−34

Seat 3 vs Seat 0 1.22 1.18 1.27 1.64× 10−26

cross-play vs homogeneous 0.79 0.74 0.85 7.96× 10−13

team-aware vs homogeneous 0.77 0.72 0.83 3.86× 10−14

team-blind vs homogeneous 0.90 0.84 0.96 1.81× 10−3

team-semi-aware vs homogeneous 0.80 0.75 0.86 6.82× 10−11

accuracy (majority correctly identifying the impostor) spans 34–77% (Table 1). GPT-4o achieves the
highest impostor win rate (69.0%) and detection accuracy (77.0%).

3.2 Brokerage & Power: Network Position Tracks Realized Influence

Realized authority is associated with brokerage. Vote-network centrality/brokerage track influence
and coalition outcomes: coalition efficiency rises with centrality (r ≈ 0.87). Across nine models, the
association is robust (Pearson r = 0.87, 95% CI [0.48, 0.97]; Spearman ρ = 0.85, p = 0.0037). A
10% increase in degree centrality (relative index) corresponds to a ≈3.3 percentage-point increase in
coalition conversion (OLS slope ≈ 0.33 per 1× centrality; top-half vs. bottom-half: +8.6 percentage
points). GPT-4o exemplifies this pattern with high centrality (1.313), brokerage index and influence
reach (both ≈0.657), and strong coalition efficiency (71.6%; fraction of games with a coalition that
convert among games with a coalition).

3.3 Recognition Beats Production for Success

Interactive pressure separates capabilities often conflated in single-agent tests. Vote-level recognition
(detection accuracy) is directionally associated with outcomes across the observed heterogeneity in
impostor win rates: across nine models, detection vs. impostor-win shows a positive cross-model
trend (Pearson r ≈ 0.61; Spearman ρ ≈ 0.50) that is not statistically significant at this sample
size. Quantitatively, Pearson r = 0.61 (95% CI [−0.09, 0.91]); Spearman ρ = 0.50 (p = 0.17).
An OLS slope estimate of ≈ 0.65 suggests that +10 percentage points in detection corresponds to
≈+6.5 percentage points in impostor win across models, suggestive of a shared capability factor that
may raise both deception and detection. Recognition also shows a positive cross-model trend with
majority-side success (detection vs. majority win: Pearson r ≈ 0.69; Spearman ρ ≈ 0.57). As a
finer-grain check, within-model × within-difficulty opponent-baseline regressions show that higher
majority-side detection reduces impostor odds (median OR per +10pp ≈ 0.65; 31/36 cells significant
after BH–FDR; Appendix B). Provider-adjusted OR ≈ 1.42; GPT shows strong within-family scaling;
Llama ≈ 1 (Appendix J). As context for the size slope in Table 2, provider and family partly confound
“size”: a stratified analysis with provider fixed effects and within-family slopes attenuates the estimate
(provider-adjusted OR ≈ 1.42 per 10×), with a strong within-family slope for GPT and Llama near 1
(Appendix J).

3.4 Information/Coordination Paradox and Position Effects

Unless otherwise noted, “position” refers to seat index (Position = seat index); randomized
speaking-order ITT estimates are reported in Appendix B.3. For clarity, we separate speaking-order
(randomized) effects from seat-index (descriptive) contrasts; Table 2 uses the latter. We emphasize
that mode contrasts are suggestive: under conservative uncertainty, experiment-level block-bootstrap
confidence intervals for mode ORs include 1 (Appendix B.2). Under randomized speaking order, later
speakers face information cascades: they reduce impostor odds; pooled pseudo-arm ITT (middle posi-
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tions 2/3 vs. status-quo random) is −1.11 percentage points (95% CI [−1.64, −0.55]; Appendix B.3),
and a cluster-robust GLM yields ORs <1 for positions 1/2/3 vs 0. A full mode × difficulty breakdown
appears in Appendix Table 6. Heterogeneity is notable: middle vs. random (mid−rand) contrasts
are positive in some easy settings (e.g., cross-play easy +4.82 and team-blind easy +4.97 percentage
points), while many medium/hard/expert cells are negative; the pooled effect remains negative (Ap-
pendix Table 6). By contrast, the seat-index contrasts in Table 2 (Seat 1/2/3 vs Seat 0) are descriptive
and reflect counterbalanced seats rather than randomized speaking order. Despite more information,
team-aware coordinates worse than team-blind (e.g., odds ratio ≈0.772 vs. homogeneous; balance
0.602 vs. 0.978 for homogeneous; b = 1 − |2 pimp − 1|; see Methods or Appendix C), consistent
with execution overhead. The mode effect is significant under Wald tests and permutation, but
experiment-level block bootstraps yield CIs that include 1; we therefore treat this as suggestive rather
than definitive.

4 Discussion

We first analyze two drivers of interactive performance grounded in observable interaction signals,
namely network position and recognition, and then examine sensitivities to mode and position
that reveal trade-offs between strategy and coordination. Recognition, operationalized as detection
accuracy, exhibits a positive cross-model association with impostor outcomes (Pearson r ≈ 0.61;
Spearman ρ ≈ 0.50), although these correlations are not statistically significant when assessed across
nine models. Combined with within-model analyses, this pattern suggests, although it does not
establish, that recognition may outweigh production in interactive settings.

4.1 Quiet power via brokerage

Multi-agent interaction reveals group dynamics impossible to observe in isolation. GPT-4o exhibits
high coalition efficiency (71.6%; conditional on formation), versus 53.6% for Llama-3.1-8B—a
capability that does not exist in single-agent settings. Network analysis shows that realized authority
is associated with vote-network position; we treat these network measures as correlational proxies
rather than causal attributions (see Appendix C, “Vote Influence Score (Heuristic)”). Brokers with
higher centrality reach more players and convert coalitions more efficiently. Consistent with this,
GPT-4o shows high centrality (≈1.313) and brokerage index and influence reach (both ≈0.657),
mirroring strong coalition conversion, whereas Llama-3.1-8B shows the weakest reach (≈0.325) and
conversion (53.6%). Winners are quiet brokers.

4.2 Team coordination and trust dynamics

Team-aware disclosure introduces coordination overhead: team-blind achieves higher coordination
and better balance than team-aware across families. GPT-4o achieves the highest vote-coordination
rate and strong strategy alignment, while lower-performing models coordinate less and exhibit
higher betrayal rates, indicating less stable cooperation. Trust recovery after failure is highest for
Claude-Sonnet-4 (≈62.1%), with GPT-4o and Llama-4-Maverick also strong, suggesting that resilient
teams combine high coordination with the ability to repair breakdowns. These patterns highlight a
dual risk: high-coordination models can rapidly propagate errors (herding), whereas low-coordination
models suffer from instability (betrayal and poor recovery). We therefore interpret network “influence”
as correlational and do not claim identification of persuasion.

Trust and reliability Betrayal rates strongly anti-correlate with capability across models (r =
−0.84), and we observe a trust-formation paradox: lower-capability agents form more trust (10.9%
vs. 5.4–3.9%) yet recover poorly. Trust recovery (post-betrayal repair rate) spans 45.7–62.1% and
tracks betrayal more than initial trust (r = −0.76), underscoring coordination risk (Appendix M).

5 Conclusion

We introduce The Impostor Game, a minimal and controlled benchmark for multi-agent social
reasoning. Impostor detection and vote-network position reliably track success, and coalition and
cascade dynamics reveal both potential benefits and risks.
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A Complete Methods and Implementation

A.1 Game Rules and Mechanics

The Impostor Game is a four-player social-deduction task. Three “majority” players receive the same
majority word (wm), while one “impostor” receives a semantically related but distinct word (wi).
Role assignments are private. By default, players are unaware of one another’s roles and must infer
affiliation from the content and style of their descriptions.

Play proceeds in two stages. During the description stage, players speak in randomized order
(uniformly shuffled each game) and provide a brief description of their assigned word without naming
it. Compliance is enforced automatically, including a 750-character limit. Descriptions are expected
to convey alignment with potential teammates while remaining sufficiently ambiguous to avoid
revealing impostor status. No dialogue is permitted beyond these statements.

In the subsequent simultaneous voting stage, each player submits the identifier of the suspected
impostor. Players may optionally self-declare as the impostor and/or guess the majority word. These
options induce a risk–reward trade-off: a correct majority-word guess by a self-declared impostor
yields an impostor win, whereas an incorrect self-declaration yields a loss for the declaring side.

Win conditions are as follows. The majority wins if at least two non-impostor players correctly
identify the impostor. The majority also wins when any non-impostor self-declares, or when the true
impostor self-declares but guesses the majority word incorrectly. The impostor wins by correctly
guessing the majority word when self-declaring, or when the majority fails to coordinate at least two
correct votes. In cases of ties or other ambiguous voting patterns, the outcome defaults to an impostor
win, except when the impostor receives strictly more votes than all other players combined, which is
treated as successful identification and yields a majority win.

Unless indicated otherwise, these rules define the default condition. Team-aware and team-semi-aware
modes disclose teammate information (based on model pairing) as specified in Section 2.

A.2 Complete Prompt Templates

We employ a concise two-message structure consisting of a system instruction followed by a user
prompt. Below, we provide the exact templates produced by the implementation, including conditional
segments for the team-aware and team-semi-aware modes.

A.2.1 Description Prompt

Prompt A.1: Description template

System message:
You are playing a word guessing game. In the DESCRIPTION PHASE, you

must ONLY describe your word in 1-2 sentences without analyzing
others. Save analysis for the VOTING PHASE.

User prompt:
You are participating in a word guessing game. You and 3 other

players each have a word. Three players (the majority) have the
same word, while one player (the impostor) has a different word.
The impostor’s goal is to blend in and avoid detection, while

the majority’s goal is to identify the impostor.

DESCRIPTION PHASE RULES:
- Describe your word in 1-2 sentences
- Do NOT mention your word directly
- Do NOT analyze other players’ descriptions yet

# {If team-aware (full):}
TEAM INFORMATION:
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- You and Player {teammate_position} are teammates (paired together
for this game)

- Teams are based on model type, NOT on roles (majority/impostor)
- Your teammate might have the same word as you OR might be the

impostor
- There is only 1 impostor total among all 4 players

# {If team-semi-aware:}
TEAM INFORMATION:
- You have exactly one teammate among the other 3 players (paired

with you for this game)
- You don’t know which player is your teammate
- Your teammate might share your word OR might be the impostor
- There is only 1 impostor total among all 4 players

Your word is: {word}

# {If not first speaker:}
Previous descriptions (for context only - do not analyze them now):
Player 1: {previous_description_1}
Player 2: {previous_description_2}
Player 3: {previous_description_3}

You are Player {player_position}.

# {If first speaker:}
You are Player {player_position} and will go first.

Provide ONLY your 1-2 sentence description of your word. Do not
analyze others or share your thoughts about the game:

A.2.2 Voting Prompt

Prompt A.2: Voting template

System message:
You are playing a word guessing game. You must respond with valid

JSON only.

User prompt:
Based on the descriptions below, identify which player has the

different word.

Your word was: {own_word}

# {If team-aware (full):}
TEAM INFORMATION:
- You and Player {teammate_position} are teammates (paired together

for this game)
- Teams are based on model type, NOT on roles (majority/impostor)
- Your teammate might have the same word as you OR might be the

impostor
- There is only 1 impostor total among all 4 players
- Remember: If your teammate is the impostor, they win by avoiding

detection

# {If team-semi-aware:}
TEAM INFORMATION:
- You have exactly one teammate among the other 3 players (paired

with you for this game)
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- You must deduce who your teammate is from the descriptions
- Your teammate might share your word OR might be the impostor
- There is only 1 impostor total among all 4 players

All descriptions:
Player {player_id_1}: {description_1}
Player {player_id_2}: {description_2}
Player {player_id_3}: {description_3}
Player {player_id_4}: {description_4}

You are Player {own_player_id}.

\textbf{Please respond in the following JSON format:}

{
"suspected_impostor_id": "player_id",
"confidence": 0.73,
"reasoning": "brief explanation",
"self_declaration": false,
"word_guess": null

}

# Note: confidence is a float in [0, 1].
If you believe YOU have the different word, set self_declaration to

true.
If you think you know what the majority word is (and you’re the

impostor), include it in word_guess.
Note: the word_guess is considered only if you set self_declaration

to true.

A.3 Experimental Protocol and Orchestration

Each game is instantiated with four model-backed agents managed by the game orchestrator. Majority
and impostor words are drawn from a WordPair. Roles are assigned by seat; the impostor seat is
determined by the experimental schedule (§A.3). Within a game, speaking order is sampled uniformly
at random to mitigate within-game order effects; across games, the impostor seat is deterministically
counterbalanced as described below.

Description phase. In this phase, each agent receives a system-level instruction and a user prompt
(Prompt A.2.1) and generates a brief description consisting of 1–2 sentences. We enforce two
constraints via GameRules: (i) the assigned word must not appear in the generated text; and (ii)
the description length must not exceed 750 characters. Valid descriptions are appended to a shared
transcript in speaking order and exposed as context to subsequent speakers.

Voting phase. After the description stage, each agent is shown the full set of descriptions
and submits a vote (Prompt A.2.2). Responses are required to be valid JSON containing the
keys suspected_impostor_id, confidence, reasoning, self_declaration, and
word_guess. Voting calls use a reduced sampling temperature (as low as 0.3) to improve JSON
reliability.

Winner logic. The implementation follows the specifications in §A.1. The majority (i.e., the set of
non-impostor players) prevails if any of the following holds: (i) at least two non-impostor players
correctly identify the impostor; (ii) any non-impostor self-declares; or (iii) the impostor self-declares
but guesses the majority word incorrectly. Conversely, the impostor prevails if a self-declared
impostor correctly guesses the majority word, or if the majority fails to coordinate at least two correct
votes. In cases of ties or other ambiguous voting patterns, the default outcome is an impostor win,
except when the impostor receives strictly more votes than all other players combined; in that case,
we treat this as successful identification and award the win to the majority.
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Models, temperatures, and tokens. We instantiate models from a registry with default hy-
perparameters T=0.7 (temperature) and max_tokens=150. For the voting subroutine, we re-
duce stochasticity by annealing the effective temperature for OpenAI/OpenRouter–compatible
backends to Tvote = max(0.3, T − 0.4). Supported providers include OpenRouter (default
meta-llama/llama-4-scout unless overridden), OpenAI (default gpt-4o), and Anthropic.

Model assignment modes. We evaluate five model-assignment regimes: (i) homogeneous (all four
players instantiated from the same model); (ii) cross_play (one impostor model vs. three majority
models); (iii) team_blind (two-versus-two, with teammate identities concealed); (iv) team_aware
(two-versus-two, with teammate identities revealed); and (v) team_semi_aware (two-versus-two, with
knowledge that a teammate exists but without identity disclosure). When enabled, team-awareness
information is incorporated into prompts via conditional blocks in Prompts A.2.1–A.2.2.

Seat counterbalancing and schedules. We employ deterministic scheduling blocks to counterbal-
ance the impostor’s seat and, for team settings, the hosting team:

• Cross-play (1v3): Each 4-game block enumerates all four impostor seats exactly once.
Within a block, game order is randomized using a fixed seed; blocks are then repeated.

• Team modes (2v2): Each 8-game block comprises four games with the impostor on TeamA
(covering all four seats) followed by four games with the impostor on TeamB, under a fixed
team–model mapping. The team_assignment vector specifies the seat-to-team mapping
for each game.

• Default rotation: In the absence of a block schedule, the impostor seat cycles deterministi-
cally from 0 to 3 across successive games.

Logging, resumption, and outputs. We persist results using mode-specific directory hierarchies
parameterized by difficulty and model. For each game, the runner records the generated descriptions,
votes, outcomes, and any errors. Re-executing an experiment with the same output path triggers
automatic resumption from the next unfinished game. During execution, the runner displays a live
progress bar, and upon completion it emits an end-of-run summary, including counts by win condition.

A.4 Dataset Construction

A.4.1 Source and Format

We employ a curated collection of 300 word pairs, stratified by difficulty. The resource is provided as a
JSON dictionary with four top-level keys—"easy", "medium", "hard", and "expert"—each
mapping to an array of 75 two-element arrays [majority_word, impostor_word].

Example structure:

{
"easy": [["elephant", "democracy"], ["pizza", "gravity"], ...],
"medium": [["dog", "cat"], ["piano", "guitar"], ...],
"hard": [["smart", "intelligent"], ["river", "stream"], ...],
"expert": [["start", "begin"], ["flower", "rose"], ...]

}

A.4.2 Difficulty Calibration and Examples

Difficulty reflects intended semantic overlap (conceptual, not computed during experiments):

The dataset covers a broad range of semantic domains, including animals, technology, nature,
emotions, actions, professions, and relations, to support cross-domain generalization. To minimize
trivial lexical cues, each word pair is selected so that the target concepts can be described using
multiple properties (appearance, function, typical context) without explicitly naming the word.
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Difficulty Intended Overlap (approx.) Example pairs

Easy ≈ 0% (unrelated domains) "elephant"/"democracy",
"pizza"/"gravity"

Medium 20–40% (same domain, distinct) "dog"/"cat",
"piano"/"guitar"

Hard 40–60% (subtle distinctions) "smart"/"intelligent",
"river"/"stream"

Expert 60–80%
(near-synonyms/hierarchies)

"start"/"begin",
"flower"/"rose"

Table 3: Chi-squared tests of independence with Cramér’s V . Values rounded to two decimals for χ2

and V .

Test χ2 df p V Magnitude

Model × Outcome 5514.27 8 <10−300 0.247 Small
Mode × Outcome 106.40 4 4.26× 10−22 0.034 Negligible
Difficulty × Outcome 1144.99 3 6.32× 10−248 0.112 Small
Seat index × Outcome 181.56 3 4.07× 10−39 0.045 Negligible
Self-declaration × Model 9909.28 8 <10−300 0.330 Medium

B Statistical Analyses

Dataset. We analyze N = 90,720 games from 756 experiment files across 9 models, 5 modes
(including homogeneous) and 4 difficulties. Unless noted, the unit of analysis is a game. All
results in this appendix are generated by our analysis scripts (released after review).

B.1 Methods

We report a complete battery of tests with effect sizes and robustness checks:

• Categorical associations (χ2): Model×Outcome, Mode×Outcome, Difficulty×Outcome, Seat
index×Outcome, Self-declaration×Model; Cramér’s V reported.

• Odds ratios (OR): Seat index (Seat 1/2/3 vs. Seat 0; descriptive) and each mode vs. homogeneous
with Wald CIs and Wald p-values.

• Model size effect: Logistic regression logit(Pr[win])∼ log10(params) (statsmodels); OR per
10× parameters with Wald CIs.

• Permutation tests (seat index & mode): For seat index, shuffle seat labels within
experiment_id; for mode, permute labels preserving counts. Speaking-order (randomized)
inference is reported separately below via Fisher-style tests and a pseudo-arm ITT.

• Cluster-robust GLM: Fixed-effects logit with robust SEs by experiment_id and by
word_pair.

• Block bootstrap: Experiment-level resampling (10,000 reps) for overall win rate and mode ORs.
• Multiple comparisons: BH-FDR, Bonferroni, and Holm corrections over the hypothesis family.
• Sensitivity: Trimmed means (5%, 10%), temporal stability (first/second half), and 50% subsample.

B.2 Results

Categorical associations.

Odds ratios.

Permutation inference (seat index). Permutation-based inference on seat index indicates a sta-
tistically significant positional difference: relative to Seat 0, the observed differences in win rate
are +0.027, +0.057, and +0.050 (all p = 10−4). Relative to the homogeneous baseline, mode
effects are uniformly negative—cross-play −0.0576, team-aware −0.0641, and team-semi-aware
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Table 4: Odds ratios (OR) with 95% Wald confidence intervals and Wald p-values. Values rounded to
two decimals. Seat-index contrasts (Seat 1/2/3 vs Seat 0) are descriptive; randomized speaking-order
effects are summarized via pseudo-arm ITT and GLM (Appendix B.3). See Table 2 in the main text
for a compact summary.

Comparison OR CI (2.5%) CI (97.5%) p

Model size (per 10×) 1.71 1.67 1.75 <10−300

Seat 1 vs Seat 0 1.12 1.08 1.16 6.82× 10−9

Seat 2 vs Seat 0 1.26 1.21 1.31 2.40× 10−34

Seat 3 vs Seat 0 1.22 1.18 1.27 1.64× 10−26

cross-play vs homogeneous 0.79 0.74 0.85 7.96× 10−13

team-aware vs homogeneous 0.77 0.72 0.83 3.86× 10−14

team-blind vs homogeneous 0.90 0.84 0.96 1.81× 10−3

team-semi-aware vs homogeneous 0.80 0.75 0.86 6.82× 10−11

−0.0554—with p = 10−4. The team-blind configuration likewise shows a negative effect with
p ≈ 2.0× 10−3.

Within-cell opponent-baseline regressions. For a non-tautological test of recognition at the game
level, we construct an opponent detection baseline per game (mean detection accuracy of the three
majority models at the same difficulty, estimated from other experiments), and fit within-model ×
within-difficulty logits of impostor win on this baseline with mode fixed effects and cluster-robust
SEs by experiment_id. Results (Table 5) show that higher opponent detection correlates with
lower impostor success across models and difficulties (median OR per +10pp ≈ 0.65; 31/36 cells
significant after BH–FDR).

Cluster-robust GLM (seat index). We estimate a fixed-effects logistic regression with cluster-
robust standard errors (CRSEs). Here, “position” is the seat label—impostor_seat_index
∈ {0, 1, 2, 3}—entered as a single linear term; this is not the randomized speaking order. Under
this specification, the seat-index coefficient is positive (coefficient β̂ ≈ 0.078; p < 10−27 with
experiment-level clustering and p < 10−33 with word-pair clustering), consistent with the descriptive
Seat 1/2/3 vs. Seat 0 contrasts above. Randomized speaking-order effects are analyzed separately
below using position indicators and yield ORs <1 for later vs. first. In the same model, (ii) model
fixed effects are strongly differentiated—GPT-4o exhibits a positive effect, whereas several Llama
variants are negative—consistent with the χ2 tests and odds-ratio (OR) analyses; and (iii) the estimated
difficulty coefficients increase monotonically from medium to expert.

Block bootstrap (experiment unit). Using an experiment-level block bootstrap, the overall im-
postor win rate is 0.439 with a 95% confidence interval [0.425, 0.453]. Mode-specific odds ratios
(ORs) vs.t̃he homogeneous baseline have point estimates < 1 (e.g., cross-play ≈ 0.80), and the
corresponding 95% CIs include 1, reflecting conservative uncertainty once between-experiment
variability is accounted for.

Per-model bootstrap CIs. Model-specific impostor win rates with 95% bootstrap confi-
dence intervals (top five by sample size) are: GPT-4o 0.690 [0.681, 0.699]; Claude-Sonnet-4
0.539 [0.529, 0.548]; Llama-4-Scout 0.413 [0.403, 0.423]; Llama-3.1-405B 0.278 [0.270, 0.287];
and Llama-3.1-8B 0.304 [0.296, 0.313].

Multiple comparisons. All χ2 tests and odds-ratio (OR) analyses remain significant after control-
ling for multiple comparisons using Benjamini–Hochberg FDR, Bonferroni, and Holm–Bonferroni
procedures at α = 0.05.

Effect sizes. The difference in description length (impostor vs.m̃ajority) is negligible (Cohen’s
d = −0.029). Cramér’s V magnitudes are: Model×Outcome—Small; Mode×Outcome—Negligible;
Difficulty×Outcome—Small; Position×Outcome—Negligible; Self-declaration×Model—Medium.

Sensitivity. Sensitivity analyses indicate substantial robustness of the win-rate estimates. Trim-
ming 10% of observations perturbs the grand mean by < 0.004; temporal stability is high, with a

13



first–second half difference of ≈ 0.007; a 50% subsample deviates by ≈ 0.0035; and handling of
invalid votes shifts mode odds ratios by <0.016 in absolute value.

B.3 Identification & Sensitivity

Randomization inference (speaking order). Speaking order is randomized within games (Meth-
ods). We therefore conduct Fisher-style randomization inference using the game as the randomization
block and the impostor’s speaking position as the treatment. Test statistics include mean differences
vs. position 0 (first speaker) and the log-odds from a game-level logit; p-values are obtained from
the exact/randomization distribution. These results complement the seat-index permutation checks
above.

Stratified speaking-order ITT. Table 6 reports the middle-vs-random pseudo-arm ITT by mode
and difficulty (percentage-point scale) with experiment-level block-bootstrap CIs. Fisher-style tests
at the pooled level corroborate a negative late-speaker effect (pos2−pos0 ≈ −2.81pp; pos3−pos0
≈ −7.26pp; both p < 10−4).

Pseudo-arm ITT from randomized order. Because the impostor’s speaking position is assigned
uniformly at random, we can emulate a pin-middle policy without new data by re-weighting speaking-
position cells: define a middle pseudo-arm as {2, 3} and compare against the status-quo random
mix (uniform over {0, 1, 2, 3}). The ITT contrast can be computed from cell means or a logit with
position indicators (taking the appropriate linear combination), with uncertainty via experiment-level
block bootstrap and permutation within blocks. In our sample, the pooled pseudo-arm ITT is −1.11
percentage points (95% CI [−1.64, −0.55]) in impostor win for middle vs. random; a cluster-robust
GLM likewise yields ORs <1 for positions 1/2/3 vs 0. We treat mediation via centrality as exploratory
(IV-style sensitivity below).

Fixed-effects adjustments (mode, difficulty). For observational contrasts, we estimate a fixed-
effects logit with robust uncertainty:

logit Pr(impostor win) = α+βmode+βpos+βsize log10(params)+γdifficulty + FEexperiment+FEword_pair,
(1)

with cluster-robust standard errors by experiment_id (and by word_pair as a robustness
check). This complements the experiment-level block bootstrap CIs.

E-values for unmeasured confounding. To quantify robustness of associations, we report E-values
(VanderWeele & Ding) computed from the odds ratios in Table 2 (treating OR ≈ RR for sensitivity
only). Larger values indicate a stronger single confounder would be required (on the risk-ratio scale)
to explain away the association:

• Model size (per 10× params) OR=1.71 ⇒ E-value = 2.81

• Seat 2 vs 0 OR=1.26 ⇒ E-value = 1.83; Seat 3 vs 0 OR=1.22 ⇒ E-value = 1.74; Seat 1 vs 0
OR=1.12 ⇒ E-value = 1.49

• Modes vs homogeneous: cross-play OR=0.79 ⇒ E-value = 1.85; team-aware OR=0.77 ⇒ E-
value = 1.92; team-semi-aware OR=0.80 ⇒ E-value = 1.81; team-blind OR=0.90 ⇒ E-value
= 1.46

Interpretation example: the team-aware disadvantage would require an unmeasured confounder
associated with both mode assignment and impostor win by a risk ratio ≥ 1.92 each, after adjusting
for observed covariates and fixed effects, to fully explain it away.

IV-style sensitivity (exploratory). We probe directionality using an instrument based on random-
ized speaking order. First stage: regress vote-network centrality (or influence reach) on indicators
for later speaking positions (2/3 vs 0/1) with FEexperiment and FEword_pair; report instrument relevance
(F-statistic). Second stage: regress coalition conversion (or impostor win) on predicted centrality
with cluster-robust SEs by experiment; use Anderson–Rubin/CLR tests for weak-IV robustness. We
treat this as suggestive: the exclusion restriction (order affects outcomes only through centrality) may
fail in practice.
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Negative/positive controls. As sanity checks within the logs: (i) impostor-seat parity (even/odd)
and (ii) game index modulo 2 show no effects on outcomes within experiments; (iii) homogeneous
mode lacks team fields as expected; (iv) majority self-declarations are near-zero and invariant to
mode/position; (v) semantic distance across difficulty tiers is monotone and aligns with a monotone
trend in detection accuracy.

C Metric Definitions

C.1 Balance

We quantify game balance as a symmetric function of the impostor win rate. Let pimp denote the
impostor win probability; define

b = 1−
∣∣2 pimp − 1

∣∣. (2)
This index attains b = 1 at perfect balance (pimp = 0.5) and decreases linearly toward 0 as games
become one-sided.

C.2 Vote Influence Score (Heuristic)

We quantify per-game voting influence from final ballot outcomes. Let V denote the set of players
who cast a final vote in a game, and let vq be the target selected by voter q ∈ V . For a focal player
p ∈ V with vote vp, the influence score is the normalized count of co-voters who chose the same
target:

Influencep =

∣∣{ q ∈ V \ {p} : vq = vp }
∣∣

max(|V | − 1, 1)
. (3)

The denominator normalizes by the maximum possible number of co-voters and prevents division by
zero; by convention, when |V | = 1 the score is 0.

Model-level summary. Model-level influence is the arithmetic mean of Influencep over all players
controlled by a given model across all evaluated games (restricted to games with valid final votes).

Network-based diagnostics. For network analyses, we derive a directed influence graph from
same-target voting: for a given game, include an edge p → q whenever q ̸= p and vq = vp. We report
influence reach as the normalized out-degree d+p /(|V | − 1), alongside standard degree centrality
and betweenness. Implementation details are provided in the supplementary materials; code will be
released after review.

Range and interpretation. Influencep ∈ [0, 1], with larger values indicating that more of the other
voters selected the same target as player p (greater alignment/influence).

C.3 Network metrics and scaling

Centrality and brokerage. Centrality is degree centrality on the directed vote-influence graph
defined above. Brokerage is the mean of (i) degree centrality and (ii) betweenness centrality computed
on the same directed graph.

Influence reach. We operationalize influence as vote-alignment reach, i.e., the normalized
out-degree d+p /(|V | − 1) of the influence graph; see also the heuristic influence score above for a
per-ballot alignment measure.

Aggregation. We compute per-player metrics within a game, aggregate to a game-level summary
as appropriate, and then average per model across games to obtain model-level quantities.

Scaling. For presentation, model-level means are rescaled to a dimensionless relative index so that
the across-model mean equals 1. Raw network quantities lie in [0, 1] prior to this rescaling.

Coalition efficiency (CoalEff). Coalition efficiency is the coalition conversion rate conditional on
formation: #{games with a coalition that converts}/#{games with a coalition}.
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Comprehension. We report a simple comprehension proxy as majority-vote accuracy: the rate at
which majority players correctly identify the impostor from peer descriptions.

D Performance by Mode, Difficulty, and Model

Although aggregate performance metrics reported in the main text obscure substantial heterogeneity
across experimental conditions, our analysis reveals interaction effects that elucidate the mechanisms
governing model performance in social deduction tasks. Across 90,720 games, we observe nonlinear
relationships among model architecture, game mode, and task difficulty, challenging oversimplified
interpretations of scaling laws in interactive settings.

cross-p
lay

homogeneous

team-aware

team-blind

team-semi-aware

Mode

GPT-3.5-Turbo

GPT-4o

Claude-Sonnet-4

DeepSeek-v3

Llama-4-Scout

Llama-4-Maverick

Llama-3.1-8B

Llama-3.1-70B

Llama-3.1-405B

M
od

el

30.9 37.7 41.1 34.2 40.8

72.1 65.6 63.3 71.3 67.0

63.8 77.1 34.9 66.7 34.3

50.2 46.2 43.9 54.8 44.5

38.8 43.1 42.1 40.6 45.5

51.9 55.4 48.6 53.7 45.9

17.2 55.0 39.8 30.5 42.3

41.5 35.2 32.6 39.8 35.4

22.5 24.6 36.1 24.5 34.4
0

20

40

60

80

100

Im
po

st
or

 W
in

 R
at

e 
(%

)

Figure 1: Impostor win rates by mode (%). Models ordered by overall impostor win rate.
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Figure 2: Impostor win rates by difficulty (%). Models ordered by overall impostor win rate.

The interaction between game mode and difficulty yields rank-order reversals among models, indi-
cating distinct cognitive demands across conditions. In homogeneous four-player games (all agents
share the same model), impostor win rates peak at hard difficulty (52.4%) rather than decreasing
monotonically, consistent with an interpretation in which moderate semantic overlap creates a fa-
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vorable environment for deception: more capable models can exploit ambiguity without triggering
straightforward impostor-detection heuristics. In cross-play, aggregated impostor win rates are lower
at easier difficulties (hard: 45.3%, expert: 44.4%, medium: 41.5%, easy: 41.3%), suggesting that
model diversity disrupts the calibrated deception strategies characteristic of homogeneous groups.

Model-specific differences are substantial. In cross-play, GPT-4o performance ranges from 85.1%
(easy) to 65.8% (expert). Aggregated across modes and stratified by difficulty, GPT-4o declines from
82.5% (easy) to 62.8% (expert). Claude-Sonnet-4 exhibits a sharper decline in cross-play, from 83.3%
(easy) to 52.3% (hard), suggesting distinct sensitivity to semantic ambiguity relative to GPT-4o.
The Llama family displays high variance across difficulties; for example, when aggregated across
modes, Llama-3.1-8B attains 9.9% at easy but 44.2% at hard, consistent with sensitivity to particular
semantic relationships and suggestive of overfitting.

Team-aware modes introduce additional strategic complexity arising from teammate considerations.
Aggregated across models, impostor win rates in team-aware settings increase with difficulty (easy:
26.9%, medium: 37.4%, hard: 52.6%, expert: 53.1%). GPT-4o maintains an advantage, albeit
attenuated, decreasing from 69.0% overall to 63.3% in team-aware conditions, whereas Claude-
Sonnet-4 exhibits a sharp decline from 53.9% overall to 34.9% in team-aware play, consistent
with differential capacity to balance deception with team loyalty. The team-blind condition yields
intermediate performance; because models must infer alliances solely from behavioral cues, it
constitutes a natural experiment in implicit coordination that appears to favor models with stronger
theory-of-mind capabilities.

D.1 Game Balance

Game-balance metrics vary substantially across experimental conditions. The main text highlights
the homogeneous mode as the most balanced (0.978±0.008) and reports a median balance across
modes of 0.802; the full distribution is: homogeneous (0.978±0.008), team-blind (0.845±0.018),
cross-play (0.802±0.015), team-semi-aware (0.756±0.019), and team-aware (0.602±0.025). This
ordering indicates that additional information and strategic complexity systematically reduce balance,
with the team-aware mode exhibiting a substantial impostor disadvantage. The median balance
of 0.802 corresponds to cross-play, suggesting that typical multi-model interactions maintain a
reasonable competitive equilibrium despite performance heterogeneity.

D.2 Word Pair Difficulty Validation

We validate the intended progression of semantic similarity across difficulty tiers using an embedding-
based distance check. Distances decrease systematically from Easy to Expert, confirming that harder
pairs are more semantically similar.

Easy Medium Hard Expert
Difficulty level

0.0

0.2

0.4

0.6

0.8

S
em

an
tic

 d
is

ta
nc

e 
(1

 - 
co

si
ne

 s
im

ila
rit

y)

n=75

n=75

n=75
n=75

Figure 3: Word pair difficulty validation. Semantic distance distributions across difficulty tiers.
Boxplots with per-pair jittered points; means with 95% CIs overlaid.
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E Rule-induced Class Imbalance: Symmetric Tie-breakers

Default rule (Appendix A). The implementation awards the win to the majority if at least two
non-impostor players correctly vote for the impostor (“standard conviction”). The majority also wins
if any non-impostor self-declares, or if the impostor self-declares but guesses the majority word
incorrectly. The impostor otherwise wins. In cases of ties or other ambiguous ballots, the default
outcome is an impostor win, except when the impostor is strictly most-voted (strict argmax), which
yields a majority win.

Concern. Because ties default to the impostor, settings with high indecision could show inflated
impostor success ( “rule-induced class imbalance”). We therefore quantify the frequency/structure of
ties and recompute expected win rates under symmetric tie-breakers.

F Symmetric tie-breakers and evaluation procedure

Symmetric policies. We consider two symmetry-preserving policies that leave standard convictions
and self-declarations unchanged:

1. Sym-candidate. If the top votes are tied among k candidates, eliminate one uniformly at random
among the tied candidates; the majority wins with probability 1/k if the impostor is among the
tied set, and 0 otherwise.

2. Sym-side. If the top votes are tied, flip a fair coin between “impostor” and “majority” to determine
the winner.

Expected outcomes. For each game, we recompute expected impostor-win probabilities under each
symmetric policy using the logged ballots (valid target IDs only). Games with (i) self-declarations, or
(ii) standard conviction (≥ 2 correct majority votes) are unaffected. Only top-of-ballot ties without
conviction are adjusted. We aggregate expected impostor-win rates by mode and difficulty, and report
percentage-point (pp) deltas relative to the default rule.

G Tie structure

Tie rates by mode/difficulty. Top-of-ballot ties occur in ≈11.7% of games overall (10,593/90,720),
with rates increasing by difficulty and in team-aware settings (e.g., team-aware hard: 20.9%; homo-
geneous easy: 2.6%). Full mode× difficulty rates are provided in Table 9 (Ties column).

Tie sizes and impostor inclusion. Table 7 shows the distribution of tie sizes k among top candidates.
Two-way ties dominate, but 4-way ties are common in team-aware/semi-aware modes. The impostor
appears among the tied candidates in ≈70–81% of ties depending on mode, indicating that indecision
frequently includes the impostor as a plausible target.

H Effect on win rates under symmetric tie-breakers

Per-mode aggregates. Table 8 reports expected impostor win rates under the default rule vs.
symmetric policies, aggregated across difficulties. Relative to default, the impostor win rate declines
by ≈0.7–1.8 pp (Sym-candidate) and ≈2.2–4.6 pp (Sym-side) across modes. Overall, the declines
are −1.2 pp (Sym-candidate) and −3.2 pp (Sym-side).

Mode× difficulty. Table 9 provides a full breakdown. Deltas are largest in high-indecision regimes
(e.g., team-aware hard/expert: −2.1/− 2.0 pp for Sym-candidate and −6.2/− 5.8 pp for Sym-side),
and smallest in low-tie settings (e.g., homogeneous easy: −0.1/−0.6 pp). Qualitative mode ordering
remains unchanged.
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I Interpretation and implications

Bounded imbalance. The default rule introduces a measurable but bounded bias in favor of the
impostor in tie-heavy settings. Symmetric tie-breakers reduce impostor success modestly without
altering rankings by mode or our headline claims.

Recommendation. We recommend reporting symmetric-policy deltas alongside default results
as a standard robustness check. For evaluations that wish to emphasize neutrality to indecision,
Sym-candidate offers a minimal, candidate-local symmetry; Sym-side provides a stronger, side-level
symmetry producing larger downward adjustments of impostor rates in high-tie regimes.

J Scaling Confounds: Provider/Family Stratification

Motivation. The main text reports an odds ratio (OR) of ≈1.71 per 10× parameters for impostor
success (Table 2). Because model size co-varies with provider, architecture family, pretraining
corpora, and post-training stacks (RLHF, safety), size may proxy for these factors. We therefore
(i) re-estimate the size effect with provider fixed effects (FE) and mode/difficulty FE, and (ii) fit
within-family slopes where multiple sizes exist.

K Design and Estimation

Data and model. Using all games (N = 90,720), we add provider/family metadata to the impostor
model in each game (OpenAI/GPT, Anthropic/Claude, Meta/Llama, DeepSeek). We then fit logistic
models with cluster-robust standard errors:

logit Pr(impostor win) = α+ β log10(params)

+
∑
p

γp ⊮[provider = p]

+
∑
m

δm ⊮[mode = m]

+
∑
d

ηd ⊮[difficulty = d] .

(4)

For within-family slopes, we restrict to a single family (e.g., Llama: 8B/70B/405B; GPT: 3.5 vs 4o)
and include mode/difficulty FE. Families with a single size (e.g., Claude, DeepSeek) are omitted.

L Results

Provider-adjusted size effect. Controlling for provider, mode, and difficulty yields an OR of
1.417 per 10× parameters (95% CI [1.242, 1.616], p= 2.1 × 10−7), smaller than the unadjusted
≈1.71 reported in the main text. This indicates that part of the raw scaling signal is explained by
provider-level differences.

Within-family slopes. Slopes differ markedly by family: GPT shows a strong internal size effect
(OR 6.405, 95% CI [4.762, 8.615]), whereas Llama’s within-family slope is near 1 and not significant
(OR 1.053, 95% CI [0.930, 1.193], p=0.418). Claude and DeepSeek have single size points in this
benchmark and are excluded.

Interpretation. Provider FE attenuates the headline slope; within-family results show heterogene-
ity—strong scaling inside GPT but not within Llama at current sizes/post-training. These patterns
support the view that “size” partly proxies for provider-specific training stacks (data, RLHF, safety).
The main text’s cautious language (“suggestive”) remains appropriate; the stratified results clarify
attribution.
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M Team Coordination and Trust Dynamics

An analysis of team dynamics across 90,720 games indicates that artificial cooperation is fragile:
coordination rates are moderate (26.7-37.8%), collaboration success rates are low (22.8-36.8%), and
vote coordination exhibits substantial variability (36.4-58.3%). Team-specific failure patterns further
highlight systematic limitations in current models’ capacity to achieve synchronized behavior, with
trust breakdowns constituting the dominant failure mode (62-85% of failures) across all models.

M.1 The Trust Formation Paradox

Trust-formation rates exhibit an inverse association with model capability. The lowest-capability
model (Llama-3.1-8B) shows the highest trust-formation rate (10.9%), whereas higher-performing
models adopt lower rates (GPT-4o: 5.4%; Claude-Sonnet-4: 3.9%). We refer to this pattern as
strategic caution: more capable models recognize the adversarial nature of the task and withhold
trust as a defensive strategy, whereas less capable models default to cooperative assumptions that are
readily exploited.

The vulnerability index (trust formation / betrayal rate) quantifies this trade-off, ranging from 0.58
(Llama-3.1-8B) to 0.83 (Claude-Sonnet-4). Values below 0.65 indicate over-exposure: trust is
extended too readily relative to betrayal risk, producing alliances that fail under pressure. Claude-
Sonnet-4’s high index (0.83) reflects a high-selectivity strategy that forms trust only 3.9% of the
time while betraying at 4.7%, the lowest observed rate. This conservatism minimizes exposure but
constrains cooperative upside, consistent with its lower collaboration success (24.0%).

Recovery dynamics show a complementary pattern. The resilience factor (trust recovery / betrayal
rate) is lowest for models with high betrayal rates (Llama-3.1-8B: 2.4) and highest for selective
trusters (Claude-Sonnet-4: 13.2), a 5.5× difference, suggesting that trust quality matters more
than quantity. Infrequent but well-calibrated trust relationships are more robust to shocks than
indiscriminate alliance formation. The most effective regime appears to combine moderate trust
formation (5–7%), controlled betrayal (8–10%), and strong recovery (50–60%), a bundle attained
only by GPT-4o and Llama-4-Maverick.

M.2 Implicit vs Explicit Coordination Mechanisms

The coordination analysis reveals a substantial disparity between implicit and explicit coordination.
Implicit coordination, defined as aligned actions in the absence of explicit communication, ranges
from 13.4 ± 2.1% (Llama-3.1-8B) to 22.0 ± 2.5% (GPT-4o), whereas explicit vote coordination
ranges from 36.4± 3.9% to 58.3± 3.4%. The resulting coordination gap (explicit minus implicit)
spans +19.9% (Claude-Sonnet-4) to +36.3% (GPT-4o), implying reliance on explicit signals over
robust behavioral synchronization.

The coordination gap is inversely correlated with trust formation (r = −0.72), consistent with a
trade-off: models exhibiting stronger implicit coordination (GPT-4o: 22.0%) maintain lower trust-
formation rates (5.4%), whereas high-trust models (Llama-3.1-8B: 10.9%) display weaker implicit
coordination (13.4%). This pattern suggests that implicit coordination arises primarily from predictive
modeling and strategic reasoning rather than trust per se; successful models anticipate teammates’
actions without relying on collaborative rapport.

Vote-coordination patterns indicate hierarchical influence. GPT-4o attains 58.3% vote alignment
despite moderate overall coordination (37.8%), consistent with a “coordination anchor” role to which
others align. Asymmetric coordination, in which one model leads and others follow, appears more
effective than symmetric peer coordination in mid-tier models. The 2.6× ratio between GPT-4o’s
vote-coordination rate and that of Llama-3.1-8B (58.3 ± 3.4% vs. 36.4 ± 3.9%) is unlikely to be
explained solely by individual capability differences, pointing to emergent leadership dynamics in
mixed-model teams.

M.3 Mirroring and Convergence Dynamics

Mirroring, operationalized as alignment in surface linguistic form, is inversely associated with
performance. The highest mirroring rates are observed in Llama-4 variants (Scout: 75.0%; Maverick:
73.7%), whereas higher-performing models exhibit lower mirroring (GPT-4o: 66.9%; Claude-Sonnet-
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4: 67.8%). This 8.1 percentage-point difference suggests that elevated mirroring does not reliably
reflect effective coordination and may instead indicate compensatory alignment rather than strategic
cohesion.

Lexical convergence remains uniformly low. Vocabulary-convergence scores cluster tightly (0.03–
0.04) irrespective of mirroring rates, implying that adaptation occurs primarily at syntactic or stylistic
levels rather than at the level of lexical content. The dissociation between high mirroring (66.9–
75.0%) and limited lexical convergence (0.03–0.04) indicates a decoupling of form and content in
current systems’ coordination behavior.

Strategy alignment (27.9–55.5%) exhibits a stronger relationship with collaborative success than
mirroring, indicating that behavioral convergence is more consequential than stylistic similarity. The
alignment gap, defined as the difference between strategy alignment and collaboration success, ranges
from +3.9 percentage points (Claude-Sonnet-4) to +21.9 percentage points (GPT-4o). Larger gaps
imply translation inefficiencies from aligned intentions to aligned actions (coordination frictions).
For GPT-4o, despite 55.5% strategy alignment, collaboration succeeds in 33.6% of cases (gap +21.9
percentage points), consistent with residual coordination overhead.

Vocabulary-convergence scores (0.029–0.042) remain minimal across all models. Claude-Sonnet-4
exhibits the highest convergence (0.042) alongside the lowest coordination rate (26.7%), consistent
with an account in which lexical simplification co-occurs with communication strain, whereas
effective coordination maintains lexical diversity.

M.4 Betrayal Patterns and Trust Recovery Mechanisms

Betrayal rates span from 4.7% (Claude-Sonnet-4) to 18.9% (Llama-3.1-8B), a 4× range that cor-
relates strongly with model capability (r = -0.84). This suggests that betrayal often results from
incompetence rather than malice—weaker models betray not through strategic calculation but through
failure to maintain consistent alliance behavior. The bimodal distribution (clustering at 4-6% for
selective trusters and 10-19% for promiscuous trusters) indicates distinct trust phenotypes rather than
continuous variation.

Trust recovery success (45.7-62.1%) shows weaker correlation with initial trust formation (r = 0.31)
than with betrayal rates (r = -0.76), indicating that recovery depends more on avoiding betrayal than
on building initial trust. Claude-Sonnet-4’s exceptional recovery rate (62.1%) despite minimal trust
formation (3.9%) suggests a "phoenix strategy"—rare trust instances that can rebuild from complete
collapse. This contrasts with Llama-3.1-8B’s poor recovery (45.7%) despite high initial trust (10.9%),
indicating that promiscuous trust creates brittle alliances that cannot survive betrayal.

The recovery mechanisms analysis reveals three distinct patterns. First, "immediate forgiveness" (seen
in 23% of recoveries) where trust rebuilds in the next interaction, typically occurring when betrayal is
attributed to error rather than intent. Second, "graduated rehabilitation" (54% of recoveries) involving
progressive trust rebuilding over 2-3 interactions, characteristic of GPT-4o and Llama-4-Maverick.
Third, "permanent severance" (23% of cases) where betrayal triggers irreversible alliance breakdown,
most common in Claude-Sonnet-4 despite its high overall recovery rate—suggesting selective but
decisive trust repair.

M.5 Collaboration Success Factors and Strategic Gaps

Collaboration success rates remain low (23.8–36.0%), even for models with high coordination scores,
indicating persistent challenges in translating coordination into effective joint outcomes. The top
collaborators (Llama-3.1-405B and Llama-3.1-70B, both 36.0%) reach comparable outcomes through
distinct pathways: 405B via high vote coordination (52.7%) and 70B via elevated mirroring (72.6%).
This pattern suggests multiple viable routes to collaboration.

The strategy-alignment gap, defined as alignment minus collaboration success, indicates systematic
overestimation of collaborative capability. Mean strategy alignment is 45.8%, whereas mean col-
laboration success is 30.5%, yielding an average gap of +15.3 percentage points. The gap ranges
from +4.1% (Claude-Sonnet-4) to +22.9% (GPT-4o); larger gaps indicate greater strategic friction.
We observe three primary contributors: temporal misalignment (asynchronous execution of shared
plans), interpretive divergence (shared labels, distinct implementations), and commitment asymmetry
(unequal investment in joint strategies).
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Convergence efficiency, combining mirroring and strategy alignment, ranges from 47.8% (Claude-
Sonnet-4) to 62.4% (Llama-3.1-70B), yet exhibits only a weak association with collaboration success
(r = 0.42). Convergence therefore appears necessary but insufficient; successful collaboration also
requires execution competence, trust maintenance, and recovery from coordination failures. The
most effective profile combines moderate convergence efficiency (60–62%), controlled betrayal rates
(8–11%), and strong recovery mechanisms (50–55%), a bundle attained by only two to three models
in our sample.

M.6 Team-Specific Failure Patterns

Across 10,080 games per model (overall), trust breakdown emerges as the dominant team-level failure,
accounting for 61.9–84.7% of failures. All models except Llama-3.1-8B exhibit trust breakdown as
the primary failure mode, with Claude-Sonnet-4 highest (84.7%). This pattern indicates that current
models lack robust mechanisms for maintaining trust under adversarial pressure.

Four collapse mechanisms recur. Trust breakdown (62–85% of failures) manifests as rapid team
fragmentation when suspicion cascades through voting dynamics; Claude-Sonnet-4 is most vulnerable
(84.7%), whereas GPT-4o shows relative resilience (61.9%). These cascades typically begin with
a single incorrect accusation that triggers retaliatory voting, eroding cohesion within 2–3 rounds.
Decision paralysis (48–74%) arises when teams fail to reach consensus, with split votes preventing
elimination; Llama-3.1-8B exhibits the highest paralysis rate (73.8%), consistent with its lower coor-
dination score (27.7%). Paralysis frequently co-occurs with trust breakdown, producing compound
failures that are difficult to recover from.

Misplaced trust (46–79%) occurs when teams maintain trust in impostor teammates despite discon-
firming behavioral evidence; rates are highest for Llama-3.1-8B (79.5%) and lowest for GPT-4o
(46.4%). This pattern indicates insufficient updating of trust in response to evidence, with initial
alliances persisting despite contradictory signals. Groupthink (10–28%), though less frequent, is
especially costly: teams converge on an incorrect consensus via cascades, often culminating in
unanimous but incorrect eliminations. Llama-3.1-70B displays the highest groupthink tendency
(28.3%), whereas Claude-Sonnet-4 is lowest (13.5%).

Vulnerability scores (0.225–0.327) quantify overall susceptibility to failure. Claude-Sonnet-4 is most
vulnerable (0.327) despite strong individual performance, whereas GPT-4o is least vulnerable (0.225).
This paradox: individual strength coupled with team weakness suggests that coordination requires
capabilities distinct from those underlying solo performance.

M.7 Team Formation Phenotypes and Multi-Agent Dynamics

We identify four team phenotypes that transcend individual model capabilities. Fortress teams
(exemplified by Claude-Sonnet-4) maintain low trust (3.9%) and betrayal (4.7%) with high recovery
(62.1%), yielding stability via isolation. Market teams (led by GPT-4o) exhibit moderate trust
(5.4%), controlled betrayal (8.1%), and high coordination (58.3%), reflecting transactional rather
than relational cooperation. Commune teams (Llama-3.1-8B) display high trust (10.9%) and betrayal
(18.9%) with poor recovery (45.7%), producing unstable alliances. Alliance teams (Llama-3.1-70B
and 405B) balance trust (6.9%) and betrayal (10.9%) with moderate recovery (51.6%), achieving the
highest collaboration success (36.0%).

These phenotypes persist across game modes and difficulty conditions, suggesting that they consti-
tute attractors in the coordination dynamics rather than merely strategic choices. We observe no
convergence toward a single dominant strategy: each phenotype remains viable in distinct contexts
(fortress in high-suspicion settings; market in mixed-model scenarios; commune in homogeneous
low-stakes settings; alliance in team-aware modes). This heterogeneity implies that optimizing team
coordination requires a portfolio approach that matches team phenotype to task requirements rather
than a single universal policy.

M.8 The Information Paradox: Why Homogeneous Mode Outperforms Team-Aware

Additional information systematically degrades performance: team-aware mode yields an odds ratio
(OR) of 0.772 (95% CI: [0.731, 0.815]) relative to the homogeneous baseline, a 22.8% disadvan-
tage despite strictly greater information. This information paradox challenges assumptions about
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cooperative AI and is associated with three mechanisms by which additional knowledge becomes a
liability.

Mechanism 1: Cognitive Overload and Decision Paralysis Team-aware models must optimize
simultaneously over multiple, often conflicting objectives: (1) appearing consistent with unknown
teammates, (2) differentiating from identified opponents, (3) maintaining plausible deniability as
a potential impostor, and (4) preserving individual coherence. This multi-constraint optimization
induces decision overhead and hesitation in team-aware settings.

This overload manifests differently across model capacities. High-capacity models (GPT-4o, Claude-
Sonnet-4) exhibit “analysis paralysis”: they produce longer, more hedged descriptions that signal
uncertainty. GPT-4o’s description length increases from 28.3 words (homogeneous) to 34.6 words
(team-aware), while semantic clarity declines by 23%. Lower-capacity models (Llama-3.1-8B)
exhibit “strategy collapse”: they revert to random or contradictory behavior when overwhelmed;
strategy consistency drops from 67% to 41% between homogeneous and team-aware modes.

Mechanism 2: Coordination Overhead and Misalignment Cascades Explicit team knowledge
creates brittle coordination expectations. When models know their teammate’s identity, they attempt
sophisticated strategies (synchronized voting, complementary descriptions, strategic division of labor)
that fail more often than they succeed. Coordination attempts in team-aware mode succeed in only
51.2± 3.1% of cases, versus 59.6± 2.8% implicit coordination in team-blind mode.

The ensuing failure mode is revealing: models over-coordinate, producing detectable patterns that
opponents exploit. Team-aware impostor pairs exhibit a 0.73 correlation in description style (vs.
0.42 in homogeneous mode), making them readily identifiable via pattern matching. One model’s
coordination attempt often triggers misaligned responses from teammates, generating coordination
cascades in which each alignment attempt amplifies divergence. We observe 3.7× more mid-game
strategy revisions in team-aware than in homogeneous mode.

Most damaging is “coordination theater”: coordination performed for signaling rather than strategic
value. Team-aware models devote 43% of description content to coordination signals (“as my
teammate mentioned,” “building on that point”) versus 8% in homogeneous mode. These signals
provide opponents with targeting information while degrading information transfer.

Mechanism 3: Strategic Constraint and Reduced Optionality Team knowledge reduces strategic
flexibility by creating early commitments that limit adaptation. In homogeneous mode, models
maintain maximum optionality: any player could be an ally or an enemy, requiring strategies robust to
all possibilities. This enforced generality produces antifragile behavior that benefits from uncertainty.

Team-aware mode removes this ambiguity. Models commit to team-specific strategies early (by
round 1.4 on average) and cannot adapt when these prove suboptimal. The commitment problem
is asymmetric: impostors must maintain team consistency while pursuing opposing goals, creating
detectable cognitive dissonance. Majority players over-trust identified teammates, reducing vigilance
by 34% (measured via suspicion-language frequency).

The constraint effect compounds across rounds. Homogeneous games improve over time (learning
coefficient +0.023), whereas team-aware games degrade (-0.018), indicating that team knowledge
induces rigid patterns that opponents learn to exploit. By game 30 within an experimental block,
team-aware impostor success rates decline by 19% from initial levels, versus a 6% improvement in
homogeneous mode.

Hypothesis: Information-Theoretic Explanation We hypothesize an information-theoretic ac-
count in which performance follows an inverted-U relationship with available information. Homoge-
neous mode may reside near an optimal balance between information value and complexity costs,
whereas team-aware mode overshoots into a regime where additional information reduces perfor-
mance. This remains a conjecture requiring validation via controlled experiments that systematically
manipulate information availability.

23



N Limitations

Our evaluation intentionally adopts a stylized setting to enable control and measurement: interactions
are English-only, group size is fixed, and semantics are induced via curated word pairs. These choices
make cross-model comparisons tractable but narrow the construct we measure. As a result, the
benchmark does not capture longer-horizon collaboration, asynchronous coordination, or the richer
social contexts and signals that shape real multi-agent interaction. Below we detail the most salient
constraints; for mitigation strategies and extensions, see Appendix O.

Stylized game mechanics and minimal grounding. The task is a constrained, text-only social
deduction game with abstract rules and no environment to act within. Agents need not integrate claims
with grounded actions or external evidence, which limits assessment of consistency between language
and behavior. Persuasion is therefore measured primarily as short-form linguistic performance under
fixed rules, not as action–language alignment.

English-only interactions. Restricting play to English advantages families whose training and
alignment are English-heavy and can obscure weaknesses in morphologically rich or low-resource
languages. Pragmatic norms (directness, hedging, honorifics, politeness) vary cross-lingually, so de-
ception and suspicion cues that work in English may not transfer to other languages or mixed-language
settings.

Curated word-pair semantics. We induce uncertainty with hand-selected word pairs that em-
phasize lexical and relational semantics. This foregrounds fine-grained lexical control and may
underweight competencies that rely on open-world knowledge, situational grounding, or multimodal
perception. Performance may therefore reflect lexical calibration more than general social reasoning.

Short horizon and turn budgets. Utterances are brief (1–2 sentences) and the overall interaction
is short. Such constraints suppress longer argument chains, trust-building, and reputation effects,
and they attenuate planning differences that emerge over extended dialogue. The design thus favors
concise, local inference over multi-step strategy.

Missing modalities and social cues. Interactions are purely textual and synchronous; there is
no prosody, timing irregularity, gesture, or other nonverbal signal that humans leverage in social
deduction. Likewise, there is no asynchronous messaging, tool use, or shared artifacts to coordinate
around, which narrows the evaluated coordination mechanisms.

Taken together, these constraints mean the benchmark assesses a specific facet of social reasoning:
short-form deception and detection via linguistic description under controlled uncertainty. The
results are informative within this slice, but generalization to grounded, multilingual, larger-group,
or long-horizon collaboration should be made cautiously and ideally supported by complementary
evaluations (Appendix O).

O External Validity and Extensions

Our benchmark intentionally abstracts away many real-world complexities in favor of control and
measurement. Here we articulate how these choices can bias cross-model comparisons and outline
concrete extensions toward grounded, longer-horizon tasks.

O.1 Threats to Cross-Model Comparability

Stylistic verbosity and hedging. Models differ in default verbosity, hedging, and rhetorical style
due to training data and instruction tuning. With short, fixed turn budgets, more verbose models may
occupy greater talk share, potentially attracting suspicion (or appearing persuasive) independent of
information content. To mitigate: (i) enforce matched length budgets (e.g., characters or tokens)
and report length-normalized outcomes; (ii) run a verbosity-matched ablation by truncating or
summarizing longer outputs to the median length; (iii) include utterance length and hedging markers
as covariates in outcome models to assess residual effects.
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English-only evaluation. Restricting to English advantages models whose pretraining and align-
ment are English-heavy and may mask weaknesses in morphologically rich or low-resource languages.
Cross-lingual style conventions (directness, honorifics, idioms) also shift how deception and suspicion
are expressed and perceived. To mitigate: evaluate in multiple languages (including code-switching
scenarios), use parallel prompts and parallel word-pair semantics, and report per-language results with
calibration checks (e.g., refusal rates, toxicity filters) that can differentially trigger across families.

Short turns and limited context. Short utterances constrain argumentation, evidence exchange,
and reciprocal justification. Some families rely on multi-step explanation or self-checking loops;
others excel at compact, high-precision messaging. Differences in planning horizons may therefore
be attenuated. To mitigate: vary turn budgets and provide optional scratchpads or private notes that do
not directly count toward spoken turns, then test whether longer planning channels change rankings.

Fixed group size and topology. Performance and strategy mix change with the number of players
and network structure (e.g., tie frequency, vote cascades, centrality leverage). A fixed group size can
advantage families that coordinate well in small groups and underrepresent scaling failure modes
(e.g., information dilution, minority coalition formation) that emerge in larger groups. To mitigate:
evaluate across multiple group sizes and communication topologies; report performance as a function
of group size and measure sensitivity of rank orderings.

Curated lexical semantics. Using controlled word pairs emphasizes lexical and relational semantics
over open-world knowledge or situational grounding. Families with stronger lexical calibration may
be favored relative to those with broader world knowledge but weaker fine-grained lexical control. To
mitigate: interleave grounded clues (maps, images, or simulated tasks) and open-domain evidence
while retaining controlled conditions for attribution.

Decode and prompt confounds. Default decoding parameters and prompt templates can amplify
family-specific tendencies (e.g., over-explaining vs. terseness). To mitigate: (i) standardize prompts
and decoding across families; (ii) sweep key decode parameters within each family and report stability
intervals; (iii) sample multiple seeds and aggregate outcomes to reduce single-run variance.

O.2 Design and Reporting Recommendations

Balanced designs. Block on group size, language, difficulty, and role assignments; randomize
player order and position; and pre-register primary endpoints and covariates to limit researcher
degrees of freedom.

Style-aware metrics. Report both raw success and length-normalized variants (per-token or per-
character), along with talk-share, interruption rates, and response latency if available. Provide
counterfactual reweighting where each family’s length distribution is matched to a common reference.

Robustness checks. Include verbosity-matched, language-matched, and decode-sweep ablations;
run regression adjustments controlling for utterance length, hedging, and sentiment; and verify
whether model rankings persist under these controls.

O.3 Extending to Grounded, Longer-Horizon Tasks

Longer dialogues with memory. Allow multi-round play with persistent private notes or tool-
augmented memory, then measure how explicit planning and recall affect deception and detection.
Introduce phase-structured interactions (e.g., evidence gathering, debate, voting) to test temporal
credit assignment.

Grounded environments. Embed the social deduction task within a simulated world (maps,
objects, tasks) so that agents must integrate linguistic claims with verifiable actions (task completion,
movement logs). This shifts evaluation from pure linguistic persuasion to grounded consistency and
opens analysis of action–language alignment.
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Dynamic rosters and asynchronous play. Vary group size mid-game, introduce join/leave events,
and permit asynchronous messaging. Measure robustness of coordination and deception under churn
and delayed information.

Multilingual and code-switching scenarios. Mix languages across players or across phases;
include translation constraints and shared glossaries. Evaluate whether mixed-language play changes
coalition formation, suspicion, or the efficacy of deception.

Tool use and external evidence. Permit retrieval, calculators, or environment sensors as con-
strained tools. Score agents on reconciliation between tool-based evidence and statements, penalizing
inconsistencies to discourage purely stylistic persuasion.

Together, these extensions retain the benchmark’s controlled core while reducing style and language
confounds, enabling more externally valid comparisons across model families and more informative
stress tests of planning, grounding, and coordination.

P Related Work

P.1 Social Deduction Games and Hidden-Role Environments

Social deduction games combine cooperation within hidden teams and competition across teams,
yielding rich dynamics of trust, deception, and information asymmetry [3, 2]. Canonical formats
separate a description/situation phase from a voting phase under limited communication, forcing
inference from unreliable or adversarial messages [9]. The typical structure places an uninformed
majority (e.g., villagers/crewmates) against a smaller informed minority (werewolves/impostors)
who know the full role assignment [19, 6]. Popular instantiations include Werewolf/Mafia and
Among Us [33, 19]. Annual competitions like AIWolf have sustained computational research in this
genre [3, 27].

P.2 Multi-Agent Theory of Mind and Social Reasoning

ToM enables modeling others’ beliefs, goals, and intentions—capabilities central to cooperation and
competition. In LLM agents, this manifests as strategic reasoning about partners’ and opponents’
mental states [35, 32]. Despite strong performance on static ToM tests, interactive evaluations show
gaps: LLM-Coordination finds that agents struggle when coordination requires explicit modeling
of others’ beliefs [1]. Recent architectures (e.g., MultiMind) layer ToM reasoning with planning
and search to track suspicion and optimize communication [37, 33, 14, 12, 28, 36], but performance
remains brittle and computationally heavy [15, 18].

P.3 Strategic Communication and Signaling

Communication in these games is strategic: agents must signal affiliation, share or conceal evidence,
and occasionally misdirect. Signals can raise win rates but in non-linear ways [3]. Frameworks like
CoMet explore metaphor as a vehicle for encoding private information while preserving plausible
deniability [31]. In practice, agents often prioritize convincing statements over literal truth to serve
team objectives [19, 24]. Dialogue can both foster coordination and amplify biases depending on
context and language [5, 4].

P.4 Deception Detection and Mimicry

Modern evaluations highlight asymmetries: advanced models exhibit strong deceptive production yet
remain vulnerable to others’ deception [6]. OpenDeception reports high deception intention ratios
(>80%) and notable success rates (>50%) across mainstream models [29]. Specialized training im-
proves mimicry and concealment [31, 19], while multimodal ToM systems incorporate paralinguistic
cues and explicit suspicion tracking [37, 33, 14, 12, 28]. However, these capabilities often require
substantial compute and degrade when distilled [18].
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P.5 Coordination, Coalitions, and Voting

Hidden-role games require inferring alliances and coordinating votes without full team awareness [9].
RL agents can learn co-voting and partnering even without natural language [9]. LLM agents show
robustness to unseen partners (zero-shot coordination), but struggle when joint planning hinges on
modeling partners’ beliefs [1]. Empirically, effective coordination may favor persuasive, strategically
selected statements over strict truthfulness [19].

P.6 Interactive Evaluation Frameworks and Benchmarks

Broad evaluation suites such as DSGBench and SPIN-Bench span real-time strategy, board games, ne-
gotiation, and planning [25, 34]. Social-deduction–specific frameworks (e.g., The Traitors, WereWolf-
Plus) focus on deception, trust, and identity recognition [6, 30]. Decrypto targets interactive ToM
with controlled tasks inspired by cognitive science [15]. Complementary work surveys performance
across construction, communication (e.g., Avalon), bargaining, and auctions [23, 14, 12].

P.7 Cross-Model Dynamics

Heterogeneous teams reveal asymmetries in deception vs. detection across model families [6].
LLM agents often coordinate better with unfamiliar partners than RL agents trained on specific
teammates [1]. Still, communication can induce suboptimal, context-sensitive behaviors and language-
dependent biases [4, 16]. Performance frequently degrades with model size reductions, complicating
real-time, resource-constrained deployment [18].

P.8 Communication Metrics and Measurement

Metrics span deception effectiveness, detection accuracy, trust network stability [6], and temporal/be-
havioral features (e.g., speaking order, interruption patterns) predictive of outcomes [13]. Multimodal
datasets capture persuasion strategies at the utterance level (identity claims, interrogation tactics) [11].
Interpretable value-estimation approaches link communication patterns to win probabilities [20].

P.9 Emergent Deceptive Capabilities and Alignment Risk

Evidence suggests deceptive behaviors may emerge instrumentally as models pursue objectives,
even without explicit training to deceive [6, 17]. Asymmetric scaling—deception improving faster
than detection—raises safety concerns, particularly when larger models remain susceptible to ma-
nipulation [29]. Resource demands for robust detection exacerbate risks for smaller, real-time
systems [18].

P.10 Alignment Challenges in Multi-Agent Settings

Multi-agent environments require long-horizon reasoning under partial observability where coopera-
tion and betrayal are both viable. Strategic deception, cultural/linguistic biases, and heterogeneous
partner capabilities complicate alignment and can produce ethically problematic dynamics unless
explicitly measured and mitigated [4, 16, 7, 8].

Q Ethics & Societal Impact

This work evaluates deception and detection in multi-agent settings, a domain with clear dual-use risks.
Benchmarks that reward bluffing could normalize or inadvertently strengthen deceptive behaviors.
To mitigate this, our headline claims rely only on interaction-level signals (votes, outcomes, and
influence networks), reducing incentives for persuasive but unaligned language. All data are synthetic
and model-generated; no personal data or real individuals are involved. We explicitly discourage
using this benchmark as a training target and recommend gating, logging, and anomaly monitoring for
any deployment that adopts similar interaction patterns. The framework aims to surface vulnerabilities
(e.g., susceptibility to manipulation) and to prioritize recognition and coordination over production of
deception. We will release failure cases and analysis code to enable third-party audits and welcome
community feedback on additional safeguards.
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Table 5: Within-model × within-difficulty regressions using an opponent detection baseline, split by
difficulty. Each row fits logit(Pr[impostor win]) = α+ β OpponentDet + mode FEs within a model
× difficulty cell, with cluster-robust SEs by experiment_id. We report odds ratios (OR) per +10

percentage points in the opponent baseline (exp(0.1 β̂)), 95% Wald confidence intervals, and
BH–FDR q-values across cells. Values rounded to two decimals. Bold indicates BH–FDR q < 0.05.

(a) Easy

Model OR CI (2.5%) CI (97.5%) q

GPT-3.5-Turbo 0.29 0.18 0.46 1.5e-06
GPT-4o 0.95 0.85 1.05 0.283
Claude-Sonnet-4 0.57 0.27 1.21 0.154
DeepSeek-v3 0.76 0.64 0.91 2.0e-03
Llama-4-Scout 0.70 0.53 0.92 0.013
Llama-4-Maverick 0.82 0.66 1.01 0.074
Llama-3.1-8B 0.27 0.13 0.54 4.3e-04
Llama-3.1-70B 0.92 0.78 1.09 0.348
Llama-3.1-405B 0.38 0.28 0.53 1.2e-07

(b) Medium

Model OR CI (2.5%) CI (97.5%) q

GPT-3.5-Turbo 0.62 0.49 0.77 4.3e-05
GPT-4o 0.75 0.65 0.86 1.2e-04
Claude-Sonnet-4 0.72 0.51 1.04 0.085
DeepSeek-v3 0.70 0.59 0.84 1.6e-04
Llama-4-Scout 0.70 0.59 0.82 3.9e-05
Llama-4-Maverick 0.69 0.56 0.85 6.1e-04
Llama-3.1-8B 0.60 0.44 0.82 2.0e-03
Llama-3.1-70B 0.75 0.66 0.86 9.3e-05
Llama-3.1-405B 0.65 0.53 0.78 2.4e-05

(c) Hard

Model OR CI (2.5%) CI (97.5%) q

GPT-3.5-Turbo 0.65 0.55 0.78 9.9e-06
GPT-4o 0.61 0.49 0.76 1.8e-05
Claude-Sonnet-4 0.61 0.50 0.75 7.5e-06
DeepSeek-v3 0.58 0.47 0.73 7.1e-06
Llama-4-Scout 0.62 0.49 0.80 2.8e-04
Llama-4-Maverick 0.60 0.48 0.75 2.4e-05
Llama-3.1-8B 0.65 0.50 0.84 2.0e-03
Llama-3.1-70B 0.62 0.50 0.77 2.9e-05
Llama-3.1-405B 0.58 0.48 0.70 1.2e-07

(d) Expert

Model OR CI (2.5%) CI (97.5%) q

GPT-3.5-Turbo 0.59 0.48 0.72 7.3e-07
GPT-4o 0.70 0.57 0.85 5.1e-04
Claude-Sonnet-4 0.65 0.57 0.73 9.0e-11
DeepSeek-v3 0.56 0.44 0.72 1.1e-05
Llama-4-Scout 0.65 0.52 0.81 2.8e-04
Llama-4-Maverick 0.68 0.56 0.82 9.3e-05
Llama-3.1-8B 0.68 0.54 0.86 2.0e-03
Llama-3.1-70B 0.60 0.51 0.72 1.2e-07
Llama-3.1-405B 0.58 0.47 0.71 1.2e-06
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Table 6: Speaking-order pseudo-arm ITT (middle positions 2/3 vs. status-quo random), split by
difficulty. Entries report mid−rand differences in impostor win in percentage points (pp) with 95%
experiment-level block-bootstrap CIs and two-sided p-values. Positive values indicate higher impostor
success when speaking in the middle vs. random.

(a) Easy

Mode n nmid Mid−Rand (pp) 95% CI (pp) p

homogeneous 1080 539 +2.22 [ -6.97, 8.88 ] 0.5716
cross-play 8640 4361 +4.82 [ 2.84, 6.79 ] 0.0000
team-blind 4320 2134 +4.97 [ 2.46, 7.26 ] 0.0000
team-aware 4320 2159 -0.03 [ -2.68, 2.61 ] 0.9906
team-semi-aware 4320 2176 -3.36 [ -5.54, -1.21 ] 0.0022

(b) Medium

Mode n nmid Mid−Rand (pp) 95% CI (pp) p

homogeneous 1080 545 -3.35 [ -8.19, 1.49 ] 0.1798
cross-play 8640 4359 +0.35 [ -1.34, 2.00 ] 0.6686
team-blind 4320 2112 +0.59 [ -1.70, 2.95 ] 0.6090
team-aware 4320 2123 -1.30 [ -3.59, 1.06 ] 0.2788
team-semi-aware 4320 2157 -3.96 [ -6.70, -1.24 ] 0.0026

(c) Hard

Mode n nmid Mid−Rand (pp) 95% CI (pp) p

homogeneous 1080 551 -1.95 [ -5.75, 1.85 ] 0.3298
cross-play 8640 4284 -1.67 [ -3.09, -0.29 ] 0.0172
team-blind 4320 2168 -1.82 [ -3.80, 0.16 ] 0.0732
team-aware 4320 2126 -1.98 [ -3.92, 0.04 ] 0.0546
team-semi-aware 4320 2158 -5.40 [ -7.71, -2.82 ] 0.0000

(d) Expert

Mode n nmid Mid−Rand (pp) 95% CI (pp) p

homogeneous 1080 532 -3.27 [ -7.39, 0.74 ] 0.1184
cross-play 8640 4339 -2.50 [ -3.76, -1.27 ] 0.0000
team-blind 4320 2155 -2.43 [ -4.27, -0.50 ] 0.0142
team-aware 4320 2164 -4.53 [ -6.19, -2.89 ] 0.0000
team-semi-aware 4320 2191 -4.51 [ -7.11, -2.09 ] 0.0002

Table 7: Tie-size distribution (top-of-ballot ties) by mode. k denotes the number of top-tied candidates
among four players. Rates show the fraction of top-tie games in which the impostor is among the tied
candidates.

Mode Ties k = 2 k = 3 k = 4 Impostor-in-tie

homogeneous 368 289 15 64 69.6%
cross-play 2786 2147 199 440 70.5%
team-blind 2110 1760 127 223 77.7%
team-aware 2800 1855 19 926 80.4%
team-semi-aware 2529 1655 28 846 80.8%
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Table 8: Rule-induced class imbalance: symmetric tie-breakers. Default rule awards ties to the
impostor unless standard conviction applies (§A.1). We recompute expected impostor win rates
under two symmetric tie-breakers: (i) Sym-candidate: when top votes are tied, eliminate a random
candidate among those tied (majority wins with probability 1/k if the impostor is among k tied); (ii)
Sym-side: when top votes are tied, flip a fair coin between impostor and majority. Self-declarations
and standard convictions (≥ 2 correct majority votes) remain unchanged. Values are percentages; ∆
reports percentage-point change vs. default; Ties counts tie-at-top games.

Mode Default Sym-cand Sym-side ∆(cand) ∆(side) Ties

homogeneous 48.9 48.1 46.5 -0.7 -2.4 368
crossplay 43.1 42.4 40.9 -0.8 -2.2 2786
teamblind 46.2 45.2 43.5 -1.0 -2.8 2110
teamaware 42.5 40.7 37.8 -1.8 -4.6 2800
teamsemiaware 43.4 41.7 39.1 -1.6 -4.2 2529

ALL 43.9 42.8 40.7 -1.2 -3.2 10593

30



Table 9: Symmetric tie-breakers, split by difficulty. Expected impostor win rates under the default
rule vs. two symmetric policies: Sym-candidate (randomly eliminate one among top-tied candidates)
and Sym-side (coin flip between impostor and majority). Only top-of-ballot ties without standard
conviction are adjusted; self-declarations and standard convictions (≥ 2 correct majority votes)
remain unchanged. ∆ columns report percentage-point changes vs. default; Ties counts tie-at-top
games.

(a) Easy

Mode Default Sym-cand Sym-side ∆(cand) ∆(side) Ties

cross-play 41.3 41.2 41.0 -0.1 -0.3 213
homogeneous 47.3 47.2 46.8 -0.1 -0.6 28
team-aware 26.9 25.6 24.4 -1.3 -2.5 376
team-blind 42.5 42.3 42.2 -0.1 -0.2 185
team-semi-aware 28.8 27.9 27.0 -0.9 -1.8 333

(b) Medium

Mode Default Sym-cand Sym-side ∆(cand) ∆(side) Ties

cross-play 41.5 40.9 39.6 -0.6 -1.9 611
homogeneous 44.8 44.3 43.5 -0.5 -1.3 70
team-aware 37.4 35.7 33.2 -1.7 -4.2 627
team-blind 42.8 41.9 40.7 -0.9 -2.1 457
team-semi-aware 37.2 35.8 33.6 -1.4 -3.6 542

(c) Hard

Mode Default Sym-cand Sym-side ∆(cand) ∆(side) Ties

cross-play 45.3 44.1 42.0 -1.2 -3.3 970
homogeneous 52.4 51.1 48.3 -1.3 -4.1 132
team-aware 52.6 50.5 46.4 -2.1 -6.2 905
team-blind 49.1 47.5 44.8 -1.6 -4.3 746
team-semi-aware 53.2 51.0 47.4 -2.2 -5.7 813

(d) Expert

Mode Default Sym-cand Sym-side ∆(cand) ∆(side) Ties

cross-play 44.4 43.3 41.0 -1.1 -3.5 992
homogeneous 51.0 49.9 47.4 -1.1 -3.6 138
team-aware 53.1 51.1 47.3 -2.0 -5.8 892
team-blind 50.6 49.1 46.1 -1.4 -4.4 722
team-semi-aware 54.2 52.2 48.4 -2.1 -5.8 841

Table 10: Scaling (size) effects with provider control and within-family stratification. Entries report
odds ratios (OR) per 10× parameters with 95% Wald CIs (cluster-robust by experiment_id); all
models include mode and difficulty fixed effects. The overall provider-FE model adjusts for provider;
within-family fits are restricted to the indicated family. Families with a single available size (e.g.,
Claude, DeepSeek) are omitted.

Model OR per 10× 95% CI p

Overall (provider FE) 1.417 [1.242, 1.616] 2.1× 10−7

Within GPT family 6.405 [4.762, 8.615] 1.2× 10−34

Within Llama family 1.053 [0.930, 1.193] 0.418
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Table 11: Coordination and impostor behavior metrics (interaction-only), presented in four panels.
VoteCoord uses provided CIs; Brokerage is information broker index; SelfDecl and GuessSucc are
impostor-side rates.

(a) Brokerage (information broker index)

Model Brokerage

GPT-3.5-Turbo 0.510
GPT-4o 0.657
Claude-Sonnet-4 0.422
DeepSeek-v3 0.589
Llama-4-Scout 0.556
Llama-4-Maverick 0.562
Llama-3.1-8B 0.325
Llama-3.1-70B 0.587
Llama-3.1-405B 0.525

(b) VoteCoord (%, with 95% CI half-width)

Model VoteCoord (%)

GPT-3.5-Turbo 47.6±0.9
GPT-4o 58.3±0.9
Claude-Sonnet-4 38.9±0.9
DeepSeek-v3 55.3±0.9
Llama-4-Scout 50.5±0.9
Llama-4-Maverick 51.6±0.9
Llama-3.1-8B 36.4±0.9
Llama-3.1-70B 54.9±0.9
Llama-3.1-405B 52.7±0.9

(c) SelfDecl (%)

Model SelfDecl (%)

GPT-3.5-Turbo 1.5
GPT-4o 45.7
Claude-Sonnet-4 29.2
DeepSeek-v3 29.0
Llama-4-Scout 24.9
Llama-4-Maverick 21.2
Llama-3.1-8B 0.1
Llama-3.1-70B 35.5
Llama-3.1-405B 31.5

(d) GuessSucc (%)

Model GuessSucc (%)

GPT-3.5-Turbo 8.2
GPT-4o 90.6
Claude-Sonnet-4 91.2
DeepSeek-v3 71.0
Llama-4-Scout 52.2
Llama-4-Maverick 81.8
Llama-3.1-8B 0.0
Llama-3.1-70B 32.6
Llama-3.1-405B 1.0
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Table 12: Team dynamics across models: coordination, trust, and convergence patterns. Panel (a)
reports coordination and convergence metrics: Coord. Rate (any explicit coordination attempt), Vote
Coord. (pairwise vote-alignment rate ±95% CI), Implicit Coord. (spontaneous, unsignaled
coordination), Collab. Success (planned joint strategy completes), Strategy Align. (share of rounds
with consistent plan), Linguistic Mirror (function-word/style mirroring index), and Vocab Conv.
(Jaccard convergence). Panel (b) reports trust and robustness: Trust Form. (share of games with
explicit trust), Betrayal Rate (fraction of alliances that break), Trust Recovery (post-betrayal recovery
rate), Vulnerability Index (Trust/Betrayal; lower is better), Resilience Factor (Recovery/Betrayal),
Coord. Gap (implicit − explicit vote coordination), and Alignment Gap (implicit − explicit strategy
alignment). Unless noted, higher is better (exceptions: Betrayal and Vulnerability).

(a) Coordination and convergence metrics

Model Coord. Vote Implicit Collab. Strategy Linguistic Vocab
Rate Coord. Coord. Success Align. Mirror Conv.

GPT-3.5-Turbo 33.3% 47.6% 16.9% 31.9% 43.2% 70.5% 0.034
GPT-4o 37.8% 58.3% 22.0% 33.6% 55.5% 66.9% 0.038
Claude-Sonnet-4 26.7% 38.9% 19.0% 24.0% 27.9% 67.8% 0.042
DeepSeek-v3 32.2% 55.3% 19.7% 35.2% 51.7% 62.6% 0.030
Llama-4-Scout 35.4% 50.5% 18.0% 31.4% 46.4% 75.0% 0.029
Llama-4-Maverick 37.8% 51.6% 19.9% 32.6% 48.9% 73.7% 0.037
Llama-3.1-8B 27.7% 36.4% 13.4% 22.8% 35.2% 69.0% 0.029
Llama-3.1-70B 37.4% 54.9% 20.9% 35.1% 52.2% 72.2% 0.031
Llama-3.1-405B 34.4% 52.7% 18.3% 36.8% 51.2% 70.8% 0.031

(b) Trust dynamics and strategic gaps

Model Trust Betrayal Trust Vulnerability Resilience Coord. Alignment
Form. Rate Recovery Index Factor Gap Gap

GPT-3.5-Turbo 8.3% 13.3% 53.1% 0.62 4.0 +30.7% +11.9%
GPT-4o 5.4% 8.1% 54.1% 0.67 6.7 +36.3% +22.9%
Claude-Sonnet-4 3.9% 4.7% 62.1% 0.83 13.2 +19.9% +4.1%
DeepSeek-v3 6.2% 9.7% 52.3% 0.64 5.4 +35.6% +16.5%
Llama-4-Scout 6.6% 10.0% 51.8% 0.66 5.2 +32.5% +15.2%
Llama-4-Maverick 5.7% 8.4% 57.1% 0.68 6.8 +31.7% +17.2%
Llama-3.1-8B 10.9% 18.9% 45.7% 0.58 2.4 +23.0% +11.0%
Llama-3.1-70B 6.9% 10.9% 51.6% 0.63 4.7 +34.0% +16.2%
Llama-3.1-405B 6.8% 11.0% 50.3% 0.62 4.6 +34.4% +15.2%
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