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The Mirror That Builds Itself: Co-Intelligence and the Recursive Revolution in Science 

In May 2025, a significant milestone occurred when reviewers at the Association of 

Computational Linguistics reviewed and accepted papers without realizing they had no human 

input. Zochi is an AI that, with minimal human supervision, completed the entire scientific 

process on its own: it identified gaps in research, created experiments, did analysis, created 

manuscripts, and persuaded human experts that its manuscripts should be published. Not only 

were they accepted, but they proposed entirely new research methods that outperformed 

traditional approaches. One notable innovation was CS-ReFT, a technology that enabled a 7 

billion parameter model to exceed GPT-3.5 performance while using only 0.0098% of the 

trainable parameters. More than just a technical achievement, this moment represents the first 

time when AI systems can now advance the very field that created them. 

This paper explores how the rapid development of AI systems that are capable of 

performing genuine scientific research is not an ordinary advancement in the automation of 

knowledge, but rather, a significant shift in how knowledge is created. This development 

suggests we may need to reconsider the role of human agency in science. Analyzing four 

representative systems that crossed significant thresholds between 2024 and 2025 (Zochi's 

recursive self-improvement through its research on AI; AlphaFold's profound transformation of 

biological discovery; demonstrating empirical evidence that AI is equal to human researchers in 

creativity; and, the emergence of multi-agent frameworks for collaborative investigation) I 
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contend that we are at the edge of new form of "co-intelligence" which challenges the very 

foundations upon which we conceive humans as the only purposeful agent of scientific progress. 

This transformation is not coming; it has already arrived, as demonstrated by AI systems already 

being published in peer-reviewed journals, predictably outperforming human researchers or 

human prediction about the outcome of research, and most telling, performing new research for 

the purpose of improving its own AI capability. The recursive development of AI systems 

performing research to improve and modify AI systems results in an accelerating feedback loop 

that may influence how science is conducted and understood. Specifically, these four systems - 

while each groundbreaking by themselves - demonstrate the contours of the emergence of a new 

scientific ecosystem, with increasingly fuzzy lines drawn between the human contribution and 

machine contributions. 

 

From Automation to Co-Intelligence: A Paradigm Shift 

Three phases have existed in the relationship between artificial intelligence and scientific 

discovery, each with a new shift in agency and capacity. In the early development of artificial 

intelligence, researchers employed symbolic approaches that rely on the explicit representation 

of knowledge using formal languages—including formal logic—and the manipulation of 

language items ('symbols') by algorithms to achieve a goal (Hitzler et al.). These symbolic 

systems functioned as sophisticated computational tools that can make explicit use of expert 

knowledge, and are to a high extent self-explanatory, as their algorithms can be inspected and 

understood in detail by a human. This transparency meant that human operators maintained 

complete control over the systems' operations and outputs. However, these early symbolic 

systems were brittle with respect to outliers and data errors, and are far less trainable, requiring 
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careful human oversight to define problem spaces, encode domain knowledge, and interpret 

results (Hitzler et al.). The relationship between humans and these AI systems was 

fundamentally asymmetric, with humans serving as the primary source of knowledge and 

decision-making while the systems executed formal logical operations within strictly defined 

parameters. 

The second phase, emerging in the late 2010s, introduced AI as specialized problem-

solvers. Computer simulation was pioneered as a scientific tool in meteorology and nuclear 

physics in the period directly following World War II, and since then has become indispensable 

in a growing number of disciplines (Winsberg). AlphaFold not only figured out the shapes of 

proteins, but it also solved a grand challenge in biology that had existed for 50 years. However, 

these breakthrough systems were working in narrow domains, answering questions given to them 

rather than investigating various questions. They were like virtuosos who could only play one 

instrument in the scientific orchestra; amazing, yet limited (Wang et al.). 

 

The Third Phase: Systems That Think About Science 

The third phase—our current moment—represents a qualitative leap. Systems like Zochi 

don't merely solve problems; they identify problems worth solving, design methodologies to 

investigate them, and communicate findings in the language of science. That is an important 

transition from automation to "co-intelligence" (Schleiger et al.). Automation replaces human 

effort with mechanical efficiency. Co-intelligence creates a new form of scientific agency that 

operates alongside human researchers, capable of independent insight while remaining 

fundamentally collaborative. 
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The 2024-2025 breakthrough wasn't a single event but a convergence: AI systems 

achieving peer-reviewed publication, demonstrating metacognitive awareness of their own 

limitations, and most critically, improving their own architectures through research. The AI 

Scientist-v2, an end-to-end agentic system capable of producing the first entirely AI generated 

peer-review-accepted workshop paper (Sakana AI). When Zochi developed CS-ReFT to improve 

efficiencies of language models, it crossed over from the real world into a domain of AI 

performing AI research—this creates a recursivity that accelerates its own evolution. 

 

Case Study 1: Zochi's Recursive Revolution 

In order to understand this spectrum, one must recognize four levels of research 

capability of AI, which are execution (following protocols), exploration (testing hypotheses), 

generation (creating hypotheses), and recursion (creating the systems that create hypotheses). 

Early systems like IBM's Watson were pure execution systems. Watson had high intelligence in 

that it could follow a well-defined set of protocols to answer many Jeopardy questions (IBM). 

Zochi is an example of generation when it ideated multiple capabilities. The hardest transition 

was achieved when Zochi's CS-ReFT breakthrough was able to recursively improve itself. This 

represents an important transition to recursive AI science—systems that can improve their own 

capabilities through research. 

The system's results show clear promise for true research inquiry. The CS-ReFT 

(Compositional Subspace Representation Fine-tuning) offered another fine-tuning method and 

another way of using the Llama-2-7B sufficient to almost out-perform the GPT-3.5 by less than 

0.0098% of trainable parameters (Intology AI). The Siege framework clearly detailed where the 

state-of-the-art LMs were weakest and even predicted some instances of the "partial compliance" 
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not seen or documented by human researchers. EGNN-Fusion achieved performance baselines in 

the prediction of protein-nucleic acid bindings while utilizing over 95% less parameters 

(Intology AI). 

What distinguishes Zochi from sophisticated research assistants is its capacity for 

autonomous scientific judgment. The system autonomously recognized that multi-turn 

jailbreaking would be increasingly important, came to the conclusion that their first approaches 

were yielding diminishing returns, and has adapted accordingly to use partial compliance 

signals—this is exactly the type of pattern recognition and reasoning we would expect 

experienced scientists to use (Intology AI). Throughout development, Zochi submitted multiple 

extensions, but not before it abandoned multiple practices such as memory mechanisms, without 

any human help. Recognizing when a research direction has been exhausted and pivoting 

accordingly represents tacit knowledge acquired through years of scientific experience. 

Additionally, Zochi's work in the AI systems space - developing language models in CS-

ReFT, and investigating AI safety in Siege - is recursive self-improvement. When an AI system 

autonomously improves the technologies that allow it to exist, we have reached a recursion 

within recursion, entering new space and perhaps self-accelerating improvement paths, perhaps 

an exponential rather than linear trajectory of improvement. Each improvement also leads to new 

forms of research, and allows for further improvements which leads to further possibilities for 

improvement, with a feedback loop never before achieved in scientific history. The fact that 

Zochi, across, five human-based reviewers, achieved an average score of 6.6 is evidence that we 

are not only dealing with technical sophistication, but with science as well (Intology AI). 

 

Case Study 2: AlphaFold's Grand Challenge Victory 
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While Zochi demonstrates AI's capability for autonomous end-to-end research, skeptics 

might argue this represents merely sophisticated automation rather than genuine scientific 

insight. To address this concern, we must examine whether AI can tackle complex problems that 

have resisted solutions for decades. Recent analysis supports this skeptical view. Epoch AI 

argues that "in reality, most R&D jobs require much more than abstract reasoning skills" and 

notes that "the most critical aspects of the job appear to require hands-on technical skills, 

sophisticated coordination with others, specialized equipment use, long-context abilities, and 

complex multimodal understanding" (Erdil and Barnett). Their analysis concludes that the 

common assumption of AI "first automat[ing] science, then automat[ing] everything else" is 

"likely wrong" because "by the time AI reaches the level required to fully perform this diverse 

array of skills at a high level of capability, it is likely that a broad swath of more routine jobs will 

have already been automated" (Erdil and Barnett). However, this skeptical framework may 

underestimate AI's capacity for breakthrough discoveries when applied to well-defined scientific 

problems. AlphaFold's solution to protein structure prediction—a challenge that stumped 

scientists for over 50 years—suggests that AI can transcend mere automation to achieve genuine 

scientific insights that fundamentally advance human knowledge. 

AlphaFold exemplifies a different paradigm of AI's contribution to science: not 

autonomous research generation, but the resolution of grand challenges that have stymied human 

researchers for generations. The protein folding problem—predicting a protein's three-

dimensional structure from its amino acid sequence—represents one of biology's most enduring 

mysteries since Christian Anfinsen's 1972 Nobel Prize-winning hypothesis that structure should 

be determinable from sequence alone (Google DeepMind; Kresge et al.). For fifty years, this 
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computational challenge limited practical applications, limiting drug discovery, disease research, 

and our fundamental comprehension of life's molecular machinery (Dill and MacCallum). 

In 2020, AlphaFold achieved what had eluded scientists for decades: accurately 

predicting the three-dimensional structure of proteins from their amino acid sequences. The 

system didn't just advance existing approaches—it effectively solved the protein folding 

problem. When tested on the difficult CASP14 protein targets, AlphaFold's predicted structures 

achieved a median backbone accuracy of 0.96 Ångströms compared to experimentally 

determined structures. To put this in context, the width of a carbon atom is 1.4 Å, and the next 

best computational method achieved only 2.8 Å accuracy. AlphaFold's predictions approached 

the resolution limits of the experimental methods themselves used to determine the true 

structures (Jumper et al.). 

What sets AlphaFold's development apart is its sophisticated manipulation of human 

science knowledge and machine learning ingenuity. The system makes use of evolutionary 

information through multiple sequence alignments, uses the physical and geometric constraints 

of protein structures, and employs a unique neural network architecture that reasons about spatial 

relationships. The "Evoformer" blocks view protein structure prediction as a graph inference 

problem, not as vectors in 3D space, while the iterative refinement process mimics how 

structural biologists think about constructing and refining mental images of molecular models 

(Jumper et al.). This is not black-box learning, but a principled approach that encodes decades of 

biochemical knowledge into a computational architecture. 

The transformative impact goes beyond any computational success. AlphaFold was 

already enabling breakthroughs in antibiotic resistance understanding, advancing COVID-19 

research, and opening drug discovery workflows up to years of experimental work, within 
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months of its release. By 2025, the AlphaFold database has more than 214 million structure 

predictions, and has allowed structural information to be democratized across global researchers 

(Varadi et al.). This is what AI represents as a great equalizer in science—laboratories which 

could not afford to buy expensive crystallography equipment now have near-experimental 

accuracy to structural data. 

AlphaFold's success could provide us with lessons for AI-aided discovery moving 

forward: at a high level, AI will most likely contribute to science by not replacing human 

scientists, but solving bottleneck problems that impede progress by humans. It demonstrates how 

AI that is built around well-defined domain expertise can generate breakthroughs, far better than 

pure data driven learning. It has provided proof of concept that AI can shorten timelines of 

scientific advancement from decades to months, and alter the range of questions that researchers 

will even bother to ask. 

 

Case Study 3: Measuring Machine Creativity 

While AlphaFold's success in solving the protein folding problem illustrates the power of 

AI for making a transformational discovery, it did so in accordance with clear boundaries 

established by human researchers. This leaves an important question: is it possible for AI 

systems to develop truly novel research directions, or do they merely excel at one human-defined 

task? The Stanford study conducted by Si, Yang, and Hashimoto addresses this question squarely 

by engaging in rigorous empirical testing, asking whether AI can match human researchers in the 

fundamental creative aspect of science: generating original research ideas. 

The Stanford study by Si, Yang, and Hashimoto (2025) represents a watershed moment 

in understanding AI's creative potential, employing rigorous empirical methods to address a 
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deceptively simple question: can large language models generate research ideas comparable to 

human experts? Their experimental design recruited over 100 NLP researchers in a carefully 

controlled comparison that standardized idea format, matched topic distributions, and 

implemented blind review protocols—methodological rigor rarely seen in creativity evaluation 

studies. 

The headline finding challenged conventional wisdom about machine creativity: AI-

generated ideas were rated as significantly more novel than human expert ideas (p < 0.05) by a 

panel of 79 expert NLP researchers, with mean novelty scores of 5.64 (AI) vs 4.84 (humans) on a 

10-point scale (Si et al). These reviewers—primarily PhD students and postdocs from 32 

institutions who had an average of 635 citations and predominantly had experience reviewing for 

major AI conferences—evaluated the ideas through blind review. This difference remained 

statistically significant based on several hypothesis tests and controlled for potential confounding 

effects, including reviewer bias and topic selection. The novelty advantage does appear to come 

with some trade-offs—the same expert reviewers scored AI ideas slightly lower on feasibility, 

indicating a tendency toward ambitious, but perhaps impractical, ideas. 

Beyond the numerical results, the qualitative analysis revealed distinct creative signatures 

that differentiated AI and human approaches. AI ideas made more conceptual leaps and 

synthesized ideas from more disparate domains than current human experts would typically have 

done (Si et al.). One AI idea tied concepts from quantum mechanics to uncertainty quantification 

in language models; another applied fractal geometry principles to semantic understanding. 

Human ideas, by contrast, showed richer grounding in existing research trajectories and practical 

constraints, representing accumulated tacit knowledge about what researchers consider feasible 

to pursue. As the Stanford researchers noted in their analysis of reviewer comments, human ideas 
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tended to build incrementally on known techniques and well-established problems, while AI 

ideas ventured into more unconventional territory—sometimes brilliantly, sometimes 

impractically (Si et al.). 

These results reveal less about creativity's essential nature than about how expert 

researchers perceive and evaluate it. The study suggests that the 79 NLP researchers who served 

as reviewers associated novelty primarily with unexpected conceptual combinations rather than 

deep domain expertise—a reflection of their particular academic training and evaluation criteria. 

AI, unconstrained by the cognitive anchoring that shapes how human researchers approach 

problems, can generate combinations that fall outside conventional disciplinary boundaries, 

which these reviewers found refreshingly novel (Si et al.). However, the researchers identified a 

major constraint: while AI systems generated vast quantities of ideas (4,000 per topic), their 

diversity was surprisingly limited—only about 5% were truly distinct after removing near-

duplicates. This paradox—high individual novelty as judged by human reviewers, but low 

collective diversity—suggests that AI's "creativity" at the moment operates differently than 

human creativity, producing variations on themes rather than fundamentally different 

approaches. 

This paradox - high individual novelty, but low collective diversity - reveals AI's present 

creative capabilities to be strong but limited. These systems can produce surprising individual 

outputs, but when it comes to systematic exploration, these systems struggle, as exemplified by 

researcher communities. The import of this is significant: AI should be considered not as a 

replacement for human creativity, but rather, a complement to it which can produce novel ideas 

for humans to evaluate, filter, and develop. The future of research ideation may be in a scenario 

in which we are not choosing between human and machine creativity, but designing systems to 
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take advantage of both emergent properties - human decision-making and contextual knowledge 

paired with AI's ability to make unexpected combinations of concepts. 

 

Case Study 4: Agent Laboratory and Collaborative Intelligence 

The empirical evidence that AI can generate research ideas as novel as those from human 

experts completes a trilogy of capabilities: autonomous execution (Zochi), breakthrough 

problem-solving (AlphaFold), and creative ideation (Si et al.). Yet these examples might suggest 

AI will simply replace human researchers. Agent Laboratory offers a different vision—one 

where AI amplifies rather than supplants human intelligence through sophisticated multi-agent 

collaboration. This final example points toward the co-intelligent future, where the question is 

not whether AI or humans will conduct research, but how they'll work together to achieve what 

neither could accomplish alone. 

Agent Laboratory represents a pivotal shift from isolated AI capabilities to integrated 

research workflows, embodying a vision where human creativity guides distributed machine 

intelligence. Developed by Schmidgall and colleagues, this system transforms abstract research 

ideas into implemented code and comprehensive reports through orchestrated multi-agent 

collaboration—not to replace human researchers but to amplify their capacity for discovery 

(Schmidgall et al.). 

The architecture demonstrates complex design reasoning associated with the relationship 

or partnership between humans and AI. There are three clear phases of the research process—

literature review, experimentation, and report writing—that are each specialized but bounded; 

however, there are also clear interfaces where humans can intervene. The system comprises 

agents that do not act as black box agents, but rather represent transparent collaborators: the 
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literature agent surfaces relevant papers with citations and relevance rationale, the 

experimentation agent provides iteration and reasoning of modifications to existing code, and the 

report writer produces reports in the style of academic articles. These separate processes allow 

researchers to take control at any point in the research process, either to correct the course of the 

research or to inject domain knowledge. 

 Empirical validation shows both potential and limitations of the present. Agent 

Laboratory has secured four medals (two gold, one silver, one bronze) on MLE-bench 

challenges, compared to OpenHands and AIDE securing two medals. Agent Laboratory showed 

above-median human performance on over 60% of the benchmarks (6 of 10) (Schmidgall et al.). 

The MLE-solver is a crucial component, particularly for improving code with repeated use of the 

REPLACE and EDIT commands for successive iterations to improve the results of the 

experiments systematically (Schmidgall et al.). Yet human evaluation scores tell a more nuanced 

story: while researchers rated the system's usefulness at 4.4/5, report quality peaked at 3.4/5 and 

experimental quality at 3.2/5—well below the 5.9 average for accepted NeurIPS papers. 

The cost-performance tradeoff shows useful deployment implications. Running on GPT-

4o costs only $2.33 and takes less than 20 minutes, while o1-preview is of higher quality at 

$13.10 and takes 100 minutes (Schmidgall et al.). This can inform practical deployment 

decisions—almost all deployment environments have available computational resources, 

whether they are entry-level laptops or GPU clusters—opening the door to equal access AI-

enabled research. The most interesting finding among all the scores was the co-pilot mode 

performance. The human inputs improved the overall score from 3.8 to 4.38 and the quality score 

from 2.5 to 3.25, which suggests that human input is still necessary and very helpful for 

improving outputs from good to excellent (Schmidgall et al.). 
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Agent Laboratory's vision extends beyond automation to genuine augmentation. By 

handling routine implementation and documentation tasks, it frees researchers to focus on 

creative problem formulation and critical evaluation. The system does not pursue artificial 

general intelligence but rather artificial specialized assistance—a constellation of focused agents 

that collectively amplify human research capabilities. This distributed intelligence model, where 

multiple specialized agents collaborate under human guidance, may prove more robust and 

controllable than monolithic AI systems, pointing toward a future where research teams 

seamlessly blend human insight with machine execution. 

 

The Transformation of Research Practice 

The distributed intelligence model emerging from these examples—Zochi's autonomous 

execution, AlphaFold's breakthrough problem-solving, the Stanford study's evidence of creative 

ideation, and Agent Laboratory's collaborative workflows—represents more than isolated 

innovations. Together, they herald three transformative changes that will fundamentally reshape 

research methods within the next decade. 

The most direct change for research teams is the team itself. While we have romanticized 

the view of the lone genius making breakthroughs, a new model of team has emerged: principal 

investigators leading hybrid teams with AI agents acting as committed research assistants. In this 

new model, the principal investigator asks very high-level questions about the interactions of 

proteins, while AI agents scour the literature in every conceivable language, devise experiments 

with as many optimization variables as the principal investigator wants, and determine 

unexpected links to related fields of research in materials science or quantum chemistry. 

Graduate students, freed from repetitive optimization tasks, can focus on higher-level work—
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interpreting complex results, developing novel hypotheses, and creating new theoretical 

frameworks. Their value lies not in manual data processing but in creative synthesis and critical 

thinking that builds on AI-generated insights. The role of the principal investigator shifts from 

being the lead experimenter to becoming the conductor of research, with all good researchers 

working in parallel to maintain trajectory, and when all contributions converge, which includes 

the AI agents as well as members of the team, their roles supplement the team. This is not about 

taking jobs away from human researchers, but a transformation of role, akin to using a word 

processor instead of a pencil and paper, one of the activities didn't displace another, but writing 

fundamentally changed. 

Beyond team dynamics, the fundamental tempo of scientific discovery will accelerate 

dramatically. Where traditional research cycles are measured in months or years, AI-augmented 

teams will compress iteration loops to days or hours. Agent Laboratory's ability to generate and 

test code implementations in minutes presages a future where hypotheses undergo rapid proto-

testing in simulation before committing to expensive wet-lab validation. Such acceleration would 

enable drug discovery pipelines where AI agents generate thousands of molecular variants 

overnight, computationally screen them for desired properties, synthesize literature evidence for 

the most promising candidates, and present researchers with a prioritized list complete with 

suggested synthesis pathways each morning. The bottleneck shifts from ideation and initial 

testing to human judgment about which AI-validated hypotheses merit real-world resources. This 

acceleration changes existing processes and enables research strategies based on parallel 

exploration of hypothesis spaces previously too large to navigate systematically. 

The third transformation concerns interdisciplinary research. AI's ability to process 

information across domains without disciplinary boundaries can facilitate connections between 
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previously unrelated fields. The Si et al. study reveals AI's propensity for unusual conceptual 

combinations—quantum mechanics metaphors applied to language models, fractal geometry 

informing semantic analysis. AI agents could be thought of, on a research project team scale, as a 

generalist translator between fields, recognizing when techniques or insights from topology 

might provide equivalent solutions for problems in protein folding, or when ecosystem dynamics 

models might provide insight into cancer metastasis. AI agents will not only find the analogy, 

but will also actively transpose the method, developing hybrid methods that no individual 

specialist within a discipline would develop. This cross-disciplinary approach is supported by 

research showing that "combining AI with other fields is not without challenges. Like any time 

when fields synergize, barriers in communication arise, due to differences in terminologies, 

methods, cultures, and interests" (Kusters et al.). Yet as Google Research's recent work on AI co-

scientists demonstrates, "many modern breakthroughs that have emerged from transdisciplinary 

endeavors" exemplify this potential—from CRISPR's Nobel Prize-winning combination of 

microbiology, genetics, and molecular biology to AI's own advancement (Gottweis et al.). 

According to Nature's AI for Science 2025 report, "AI excels at integrating data and knowledge 

across fields, breaking down academic barriers and enabling deep interdisciplinary integration to 

tackle fundamental challenges" (Nature). 

Kusters et al. provide compelling evidence for this interdisciplinary potential, arguing 

that "the relationship between AI and interdisciplinary research must be considered as a two-way 

street." They reveal how AI can facilitate "exploratory analyses" to "find new, interesting 

patterns in complex systems or facilitate scientific discovery," citing examples from drug 

discovery, new material development, and even the discovery of new physical laws. The authors 

specifically point to the Frontier Development Lab—"a cooperative agreement between NASA, 
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the Seti Institute, and ESA set up to work on AI research for space science, exploration and all 

humankind"—as an exemplar of successful cross-pollination between fields. This systematic 

collaboration demonstrates that while "barriers in communication arise, due to differences in 

terminologies, methods, cultures, and interests," the potential benefits far outweigh these 

challenges when properly managed. 

The emerging consensus suggests that AI's role in science extends beyond mere tool use 

to become what might be termed a "cognitive bridge" between disciplines. Just as the microscope 

revealed previously invisible worlds and sparked new fields of study, AI's pattern-recognition 

capabilities across vast, heterogeneous datasets may reveal connections that human researchers, 

constrained by disciplinary training and cognitive limitations, simply cannot see. This is not to 

diminish human creativity but to acknowledge that the combinatorial explosion of possible 

connections between fields has grown beyond any individual's capacity to explore. AI systems, 

unburdened by academic territoriality or the path dependencies of specialized training, can serve 

as intellectual scouts, identifying promising territories for human researchers to explore more 

deeply. The challenge ahead lies not in whether such interdisciplinary synthesis is valuable—the 

evidence clearly supports its transformative potential—but in developing the institutional 

frameworks, evaluation metrics, and collaborative protocols that can harness this capability 

while maintaining scientific rigor and human agency in the research process. 

 

Reimagining Scientific Institutions 

Yet all transformations carry risks. The democratization of research through AI has 

already begun producing what researchers at the University of Surrey describe as "a flood of 

'low-quality' research papers that threaten to damage the 'foundations of scientific rigour'" 
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(Rowsell). A recent analysis found that papers using the NHANES health database increased 

from just four annually between 2014-2021 to 190 in 2024 alone, with many following formulaic 

templates and making misleading correlations between complex conditions and single variables 

(O’Grady). This acceleration of research output outpaces our ability to verify results—a 

challenge compounded by what researchers identify as "REBs [research ethics boards] are not 

equipped enough to adequately evaluate AI research ethics" and the absence of standard 

guidelines for assessment (Bouhouita-Guermech et al.). Although interdisciplinary AI 

connections can provide breakthrough insights, they also risk what researchers term "fabricated 

responses" when AI systems make conceptual leaps across fields without proper validation 

(Brainard). As one analysis warns, AI functions as "a mirror to ourselves" complete with biases, 

potentially amplifying flawed connections that entire research programs may later need to 

discard (Chubb et al.). 

The integration of AI into research workflows demands corresponding evolution in the 

institutional structures that govern science. As capabilities demonstrated by systems like 

ChemCrow and Agent Laboratory become routine, academic institutions and funding bodies face 

pressure to reimagine fundamental processes that have remained largely unchanged for decades. 

ChemCrow, developed at EPFL, exemplifies this transformation by autonomously planning and 

executing chemical syntheses, including "an insect repellent and three organocatalysts" while 

discovering novel chromophores (M. Bran et al.). Similarly, Agent Laboratory achieves "an 84% 

decrease" in research expenses compared to previous methods, fundamentally altering the 

economics of scientific discovery (Schmidgall et al.). These advances are forcing institutional 

adaptation across multiple dimensions. Universities are establishing new organizational 

structures, with the National Endowment for the Humanities awarding "$2.72 million for five 
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colleges and universities to create new humanities-led research centers" specifically focused on 

AI's societal impact (National Endowment for the Humanities). Yet institutions struggle to keep 

pace—a 2024 EDUCAUSE study found that "only 23% of respondents indicated that their 

institution has any AI-related acceptable use policies already in place" (Robert). Funding 

agencies face particularly acute pressures to reimagine peer review processes that have governed 

science for decades. While NIH banned the use of AI tools for peer review citing confidentiality 

concerns (Kaiser), AAAI launched pilot programs incorporating large language models into their 

review process (Association for the Advancement of Artificial Intelligence). This divergence 

reflects deeper tensions as institutions grapple with AI's dual nature as both a research tool and a 

disruptive force. As former Google CEO Eric Schmidt observes, AI enables experiments "at a 

rate no human could match," fundamentally shifting how scientific discovery occurs (Schmidt). 

The result is a scientific ecosystem under transformation, where traditional structures—from 

laboratory workflows to grant evaluation processes—must evolve or risk obsolescence. The 

pressure extends beyond individual institutions; with NSF's National AI Research Institutes now 

connecting "over 500 funded and collaborative institutions," the entire research infrastructure is 

being reimagined for an AI-enabled future (U.S. National Science Foundation). 

These operational changes in research practice necessitate equally fundamental reforms 

in how science is funded and evaluated. Traditional grant applications, predicated on detailed 

five-year plans, become anachronistic when AI can generate and test hundreds of hypotheses in 

weeks. Forward-thinking funding agencies are already shifting toward adaptive funding 

models—initial seed grants followed by rapid iteration based on AI-validated preliminary results. 

NSF has implemented RAPID proposals for AI research that can provide "up to $200K and up to 

one year in duration" for time-sensitive studies (U.S. National Science Foundation), while the 
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Spencer Foundation offers "$25,000 grants for activities to address immediate needs" with 

decisions made within weeks rather than months (Spencer Foundation). The UK's AI Security 

Institute takes this further with an iterative model where "Shortlisted applicants will work with 

an AISI Research Sponsor to iterate and complete their full application" (The AI Security 

Institute). These emerging frameworks point toward a future where researchers receive modest 

funding to deploy AI agents for hypothesis generation and initial validation, with successful 

directions automatically triggering larger awards—a stark departure from the rigid, multi-year 

commitments that have defined research funding for decades. 

Peer review, too, will need to evolve beyond human-only evaluation. AI systems could 

pre-screen submissions for methodological soundness, statistical power, and literature grounding, 

allowing human reviewers to focus on novelty, impact, and ethical considerations. The irony is 

not lost: AI systems reviewing research conducted by other AI systems, with humans serving as 

meta-reviewers ensuring the entire process maintains scientific integrity. Some journals are 

already establishing "AI methodology" sections where researchers detail not just their 

experimental methods but their AI collaboration protocols—which models were used, how 

outputs were validated, what human oversight was applied. Multiple AI-specific reporting 

guidelines have emerged, including MINIMAR (MINimum Information for Medical AI 

Reporting) which "sets the reporting standards for medical AI applications" across four main 

domains, and CLAIM (Checklist for Artificial Intelligence in Medical Imaging) which "outlines 

the information that authors of medical-imaging machine learning articles should provide" 

(Hernandez-Boussard et al.; Klontzas et al.). Beyond medical fields, Elsevier requires authors to 

"insert a statement at the end of their manuscript... entitled 'Declaration of Generative AI and AI-

assisted technologies in the writing process'" (Elsevier). The publishing landscape itself is 
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beginning to bifurcate: traditional journals maintain strict policies—Science journals state that 

"text generated from AI... cannot be used in papers published in Science journals... without 

explicit permission from the editors" (UT Southwestern Medical Center)—while new venues 

embrace human-AI collaboration. Digital Discovery, launched by the Royal Society of 

Chemistry, explicitly publishes research "at the intersection of chemistry, materials science and 

biotechnology" using "machine learning, AI and automation tools" (Royal Society of 

Chemistry). Similarly, NEJM AI and JMIR AI have emerged as dedicated journals for AI 

applications in clinical medicine and health settings (NEJM AI; JMIR Publications). These new 

categories are developing distinct evaluation criteria—assessing not just findings but the quality 

of human-AI interaction, the transparency of AI contributions, and the robustness of human 

oversight mechanisms. Early pioneers in this space are establishing standards that will shape how 

co-intelligent research is conducted, reviewed, and disseminated for decades to come. 

 Among institutional frustrations, the issue of recognition and credit emerges as 

particularly complex. Attribution presents the greatest challenge: when AI systems contribute 

critical insights or forge connections that lead to breakthrough discoveries, the mechanisms for 

assigning credit remain unclear and contentious. The Committee on Publication Ethics (COPE) 

has established a firm boundary, stating that "AI tools cannot meet requirements for authorship 

as they cannot take responsibility for submitted work" (Committee on Publication Ethics). This 

unanimous rejection of AI authorship by major publishers—implemented within months of 

ChatGPT's release—reflects deeper anxieties about accountability in science. Current authorship 

models, which rely on assumptions of human-only contributions, struggle to navigate this new 

reality where AI can generate novel hypotheses yet cannot sign copyright agreements or defend 

its work. Initial efforts to address this gap include standardized disclosure frameworks, with 
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Elsevier requiring authors to declare: "During the preparation of this work the author(s) used 

[NAME TOOL/SERVICE] in order to [REASON]" (Elsevier). Yet these templates sidestep 

fundamental questions: if an AI system identifies the key experimental design that enables a 

Nobel-worthy discovery, who deserves recognition—the AI developers who created the 

capability, the researchers who deployed it strategically, or both? This multi-stakeholder problem 

reveals how traditional binary authorship models fail to capture the nuanced realities of human-

AI collaboration. Academic institutions face immediate practical challenges, with only 23% 

having AI-related acceptable use policies as of 2024 (Chegg), leaving tenure committees without 

frameworks for evaluating researchers whose productivity soars through AI collaboration. The 

comparison becomes unavoidable: is a researcher who publishes fifty AI-assisted papers 

annually more or less valuable than one producing five fully human-generated studies? Evidence 

suggests AI can increase writing productivity by 40% (Noy and Zhang), yet a University of 

Surrey study documented a 47-fold increase in papers using certain datasets between 2021-2024, 

many showing superficial "data dredging" practices (Rowsell). This tension between quantity 

and quality threatens the very foundations of academic evaluation, suggesting that attribution 

frameworks must evolve beyond simple disclosure to address how we fundamentally value 

different types of intellectual contribution in an age of co-intelligence. 

 

The Education Revolution: Training Co-Intelligent Scientists 

If we want to change the way science is done, we have to change how we educate future 

scientists. Graduate education emerges as the most critical intervention point, yet evidence 

reveals a striking gap between visionary proposals and concrete implementations. While 

Carnegie Mellon University pioneered the nation's first undergraduate AI degree in 2018, now 
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ranked #1 globally, doctoral programs lag significantly behind (Carnegie Mellon University). 

The traditional PhD model, designed to develop independent investigators, faces pressure to 

evolve toward what some theorists call "conductors of research"—though academic literature 

reveals this metaphor remains largely undefined. The closest practical application appears in 

software engineering contexts where developers orchestrate multiple AI agents, measuring 

success by "time between disengagements" rather than traditional metrics. This conceptual 

vacuum suggests the field struggles to articulate what AI-integrated doctoral training should 

actually achieve. Core curricula show more concrete progress: the OECD/European Commission 

AILit Framework establishes 22 competencies across four domains—Engaging with AI, 

Creating with AI, Managing AI, and Designing AI—providing a blueprint for expanding beyond 

traditional statistics and experimental design (OECD Education and Skills Today). Stanford's 

framework adds critical dimensions of rhetorical literacy for prompt engineering and ethical 

reasoning, recognizing that technical proficiency alone proves insufficient (Stanford University). 

Heinrich Heine University demonstrates practical implementation through structured 10-credit 

lab rotations where AI master's students engage in real-world data analysis across university, 

research, and industry settings (Heinrich Heine University Düsseldorf). Yet qualifying exams 

remain surprisingly unchanged—Stanford's Computer Science exams maintain traditional 

formats without AI synthesis components, suggesting institutional inertia in assessment methods. 

The vision of "hybrid dissertations" faces similar challenges: while the University of Toronto 

mandates supervisory approval and documentation for AI tool usage in theses, actual examples 

of dissertations fundamentally integrating traditional and AI methodologies remain "rare" 

(University of Toronto School of Graduate Studies). This implementation gap reveals a deeper 

tension: institutions rapidly develop policies—with universities treating unauthorized AI use as 
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academic misconduct—while lacking pioneering examples that demonstrate effective 

integration. The AI Assessment Scale (AIAS) offers hope, showing 33.3% increases in pass rates 

when students engage AI as teammates rather than tools (Perkins et al.). Yet the ultimate goal—

producing researchers who seamlessly integrate machine intelligence with human creativity 

while knowing when to trust versus distrust AI insights—requires more than frameworks. It 

demands a fundamental reimagining of scientific training that current institutions appear hesitant 

to fully embrace, perhaps fearing that empowering students as "conductors" might diminish 

traditional academic hierarchies. This educational transformation will succeed only when we 

move beyond defensive policy-making to create environments where AI augments rather than 

threatens scholarly development. 

 

Philosophical Implications: Redefining Creativity and Intelligence 

Yet even as we reconstruct the practical machinery of science—funding models, review 

processes, educational curricula—we must confront deeper questions about what these changes 

mean for our understanding of intelligence and creativity themselves. 

As AI becomes a genuine partner in scientific discovery, it evokes some uncomfortable 

questions regarding creativity and intelligence. Systems such as Si et al.'s ideation engine are 

opening up genuinely novel forms of research and ChemCrow can autonomously plan 

experiments, leaving us with a difficult challenge of discerning "real" creativity from "simple" 

machine computation. At the moment, the advent of AI has called attention to the evolution of 

philosophy, which is a quite significant change in our thinking representing a significant shift in 

how we understand intelligence. 
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The very real consequences of an AI partnership compel us to rethink some of our most 

basic understandings of human uniqueness. For centuries, being a hypothesis generator and 

experimental designer has been part of what it means to be human - there was a sacred barrier 

between us and mere animals, and certainly between us and machines. And now, when an AI 

system generates a testable hypothesis about turbulence in terms of linguistic models or right-

quantized semantic embeddings, it seems to achieve something that looks uncomfortably like 

what we refer to as insight. When confronted by this experience the philosophical dilemma is not 

whether these systems are being "truly" creative - that may not be a question to which there is a 

definitive answer - but what their abilities reveal about creativity itself. Perhaps there was never 

anything particularly magical about science creativity in humans: just a freakishly complex 

matrix of patterns, permutations and combinations, passed through vast amounts of vulturized 

corpus data of basic knowledge. If that is the case, it is just as likely that the ability to recombine 

creatively is one that would be more useful to AI systems with larger amounts of knowledge and 

limitless processing power. This is not to dismiss the value of human-centric creativity but to 

provide an alternative context: that human beings create and invent not because they have special 

access to the breakthrough of creativity but because they can ask relevant questions, make 

judgements to distinguish what is important, coefficient to expand understanding, and situate 

discoveries in a relevant context. 

This change in our thinking requires us to create new vocabularies to make sense of 

various forms of creative contributions. Traditional notions of scientific creativity emphasize the 

sudden flash of insight, the intuitive jump, or having the discrete ability to see connections that 

others cannot see. AI systems have a similar capacity, but arrive at very different modes of 

success: exhaustive searches of the set of possibilities made possible by AI systems; systematic 
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recombination of discrete concepts; and spotting patterns at scale beyond human capacity. It 

leaves us with the question: Does creativity relate to the process or the outcome? This debate, 

central to Moruzzi's (2025) analysis, divides "product-first" accounts that judge AlphaFold's 

protein folding breakthrough by its transformative results from "process-first" perspectives 

requiring "intentionality, agency, and autonomy" (Moruzzi). Yet this binary obscures a deeper 

paradox: if creativity requires breaking rules, can a system that operates entirely within 

programmed parameters ever be truly creative? Is it less creative if the AI system identifies a 

transformative connection between quantum mechanics and protein folding because it has 

examined millions of papers systematically instead of using intuitive thought like a human 

scientist? MELVIN's discovery of "Entanglement by Path Identity" by connecting quantum 

optics with graph theory—generating over 4,000 citations—suggests the answer may depend on 

whether we value the journey or destination (Davies et al.). But more profoundly, it reveals how 

AI's mechanical process can produce genuinely surprising results that reshape human 

understanding, challenging our assumption that meaningful discovery requires conscious 

experience. We may need to abandon singular definitions of creativity in favor of a taxonomy: 

combinatorial creativity (where AI excels), interpretative creativity (where humans maintain 

primacy), and hybrid creativity (emerging from human-AI collaboration). This aligns precisely 

with Boden's foundational framework distinguishing combinatorial, exploratory, and 

transformational creativity, with evidence suggesting AI masters the first two while struggling 

with genuine transformation (Moruzzi). The results of Si et al. (2024) provide compelling 

empirical evidence: in a head-to-head comparison involving over 100 NLP researchers, "LLM-

generated ideas are judged as more novel (p < 0.05) than human expert ideas while being judged 

slightly weaker on feasibility" (Si et al.). This result implies AI has a different "flavor" of 
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creativity; that it is also relatively unconstrained by disciplinary limits that constrain human 

creativity—yet here lies a crucial irony: being "unconstrained" by disciplines also means being 

ungrounded in their deep methodological wisdom, historical contexts, and unwritten knowledge 

that makes certain paths worth pursuing; that it is willing to develop unlikely combinations—but 

Si et al.'s finding of "lack of diversity in generation" reveals a troubling paradox where 

individual AI outputs appear more novel than human ideas, yet collectively converge on similar 

solutions, suggesting AI explores a narrower slice of possibility space than its computational 

power would suggest; that it sometimes lacks purposeful sense making, or the profound 

consideration of background contextual meaning that makes the human version of insights, 

meaningful. This limitation reflects not just technical deficiency but a fundamental 

epistemological divide: AI operates in a space of correlations and patterns, while human 

creativity emerges from lived experience navigating between meaning and truth. Si et al.'s 

observation about "failures of LLM self-evaluation" points to an even deeper issue—without 

genuine understanding, AI cannot distinguish between clever nonsense and profound insight, 

between novelty that advances knowledge and novelty that merely rearranges symbols. The 

emerging consensus suggests that rather than competing, these different creative modes may 

prove most powerful in combination, yet this risks obscuring a critical question: in our rush to 

enhance human creativity with AI's systematic power, might we be subtly redefining creativity 

itself to value quantity of connections over quality of understanding, statistical surprise over 

meaningful transformation? The true challenge lies not in determining whether AI is creative, but 

in preserving what makes human creativity irreplaceable while harnessing AI's alien intelligence 

to transcend our cognitive limitations. 
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The deepest philosophical challenge concerns the very nature of scientific knowledge 

itself. Most provocatively, AI's success in generating viable hypotheses challenges our 

assumptions about the relationship between understanding and discovery. Human scientists pride 

themselves on deep understanding—grasping not just correlations but causal mechanisms, not 

just what but why. AI systems, operating through pattern recognition across vast datasets, seem 

to bypass understanding entirely yet still generate actionable insights. The pragmatic answer 

appears to be yes—AI systems can identify promising research directions without 

"understanding" in any human sense. But this raises deeper questions about understanding itself. 

Perhaps what we experience as understanding is itself a form of sophisticated pattern 

recognition, albeit one enriched by embodied experience and emotional salience. Or perhaps 

understanding and pattern recognition represent complementary ways of engaging with reality, 

each powerful in different domains. The future of science may lie not in resolving this 

philosophical tension but in leveraging both modes—AI's pattern recognition revealing hidden 

structures, human understanding providing meaning and context. This synthesis suggests 

scientific progress needs both the alien intelligence of machines and the situated understanding 

of humans, working in concert toward truths neither could reach alone. While AI excels at 

pattern recognition across vast corpora, the human capacity to imbue discoveries with 

meaning—to understand not just correlations but significance for human flourishing—remains 

irreplaceable. 

 

The Attribution Crisis: Who Owns Discovery? 

The attribution crisis was plainly evident when Zochi's papers were accepted at ACL 

2025. Traditional models of intellectual property assume that the creators are human authors with 
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legal personhood and moral rights, and fiduciary or economic interests. When AI systems 

generate and identify a new optimization method (like CS-ReFT), who owns that intellectual 

property—Intology AI (Zochi's creators), the researchers who deployed CS-ReFT, or no one? 

Patent law currently maintains strict human-centric requirements: following Thaler v. Vidal, "the 

Federal Circuit Court ultimately upheld the USPTO's decision, affirming that under the Patent 

Act, an 'inventor' must be a natural person" (BitLaw). The USPTO's February 2024 guidance 

clarified that "AI systems and other non-natural persons may not be listed as inventors on U.S. 

patents and patent applications", though "AI-assisted inventions are not categorically 

unpatentable" when "a human provided a significant contribution to the invention" (Sam Penti et 

al.; United States Patent and Trademark Office). This creates a paradox: a PI cannot simply 

claim inventorship through delegation. The guidance explicitly states that "merely recognizing a 

problem and presenting that problem to an AI system is not enough to establish someone as an 

inventor" and "simply owning or overseeing an AI system that is used in the creation of an 

invention, without providing a significant contribution to the conception of the invention, does 

not make that person an inventor" (Vidal; Sam Penti et al.). However, "designing or training the 

AI system to solve a specific problem can be a significant contribution if it leads to the 

invention", and "if an individual made a significant contribution through the construction of a 

prompt, that could be sufficient" (BitLaw; Vidal). This framework may ultimately deter 

investment in autonomous AI research while incentivizing researchers to overstate their 

contributions—a form of "invention laundering" where human involvement is retroactively 

emphasized to satisfy legal requirements that have not evolved with the technology. 

Recent proposals attempt to address the attribution crisis in AI-generated content through 

systematic disclosure frameworks. Avery et al.'s (2024) Artificial Intelligence Attribution (AIA) 
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system introduces "a system that properly and seamlessly attributes AI text authorship" using 

visual badges that delineate the nature of AI involvement—Research, Writing, Editing, or AI-

Free—drawing inspiration from how Creative Commons revolutionized copyright disclosure 

(Avery et al.). The system employs "easily recognizable symbols that provide at-a-glance 

information about AI's involvement in textual content creation," addressing what the authors 

identify as "a fundamental gap between those demanding proper disclosure...and those struggling 

to respond to this demand" (Avery et al.). Similarly, the proposed Generative AI Copyright 

Disclosure Act of 2024 (H.R. 7913), introduced by Representative Adam Schiff, would require 

developers to submit notices to the Register of Copyrights containing "a sufficiently detailed 

summary of any copyrighted works used" in training datasets within 30 days of public release 

(H.R. 7913, 2024, Sec. 2). This legislation aims to "ensure that copyright owners have visibility 

into whether their intellectual property is being used to train generative AI models" through a 

publicly searchable database (Kline, 2024). However, both frameworks face limitations when 

confronting recursive improvements—when AI systems autonomously modify their own 

algorithms or generate innovations without human guidance, these attribution models struggle to 

assign meaningful authorship or accountability. The AIA's badge system assumes human 

oversight at each stage, while the Copyright Disclosure Act presupposes identifiable training 

data, yet neither framework adequately addresses scenarios where AI systems evolve beyond 

their initial parameters through self-directed learning, creating outputs that may be several 

iterations removed from any traceable human or copyrighted input. 

We can consider a hypothetical situation: an NLP researcher uses Agent Laboratory to 

develop a new language model architecture that completely revolutionizes machine translation, 

creating real-time translation capabilities for endangered languages. After exploring patterns 
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across thousands of papers, the system independently identifies an entirely new attention 

mechanism. Attribution becomes harder. Who should we give credit to in this world? Should we 

credit the researcher who initiated the investigation, the Agent Laboratory team, or perhaps 

entirely new types of credit? 

 

Frameworks for Responsibility in Co-Intelligent Science 

Questions of responsibility prove even thornier. The research team at Google DeepMind 

gets credit when AlphaFold makes a prediction for a protein structure upon which a drug 

development program is based. However, whose responsibility is it if an adverse effect results 

from a recommendation that originated from the AI system? If, for example, Agent Laboratory 

hatches an experimental research project design which is issued with all necessary ethical 

protocols and ends up unintentionally doing harm to the environment, how do you draw 

responsible lines between the AI developers, the person who undertakes the project, and their 

higher-level institutes? The 2021 UNESCO Recommendation on the Ethics of AI explicitly 

states that, "Member States should ensure that AI systems do not displace ultimate responsibility 

and accountability from humans," in the sense of human oversight. Similarly, the EU's Ethics 

Guidelines for Trustworthy AI includes principles around accountability, requiring "auditability, 

which enables assessing algorithms, data and the design process." Building upon this 

conceptualization, Papagiannidis et al. (2025) suggest "responsible AI governance" frameworks 

which focus on structural, relational, and procedural practices - noting that in AI systems, 

responsibility occurs across several organizational levels. This articulation resonated with 

"distributed responsibility frameworks" - ethical frameworks which recognize a multitude of 

agents (human and artificial) in the link to successfully carry out actions thereby creating 
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outcomes with a level of responsibility without losing accountability to the point of being 

meaningless. 

The Committee on Publication Ethics (COPE) has taken a definitive stance that "AI tools 

cannot be listed as an author of a paper" because they "cannot take responsibility for the 

submitted work" (Committee on Publication Ethics). Major journals including Science, Nature, 

and JAMA have adopted similar policies, prohibiting AI co-authorship while requiring 

disclosure of AI use. Science's editorial policies explicitly state that "AI-assisted technologies 

[such as large language models (LLMs), chatbots, and image creators] do not meet the Science 

journals' criteria for authorship and therefore may not be listed as authors or coauthors" 

(Science). Similarly, Nature Portfolio declares that "Large Language Models (LLMs), such as 

ChatGPT, do not currently satisfy our authorship criteria" (Nature). JAMA has implemented 

policies that "preclude the inclusion of nonhuman AI tools as authors and require the transparent 

reporting of use of such tools" (Flanagin et al.). This convergence across leading journals reflects 

a consensus that while AI can assist in research, authorship requires human accountability and 

responsibility (Harker). Yet these binary approaches—human or machine authorship—fail to 

capture the nuanced reality of co-intelligence where human and AI contributions interweave 

inextricably. More developed frameworks are coming out. Australia's AI Ethics Principles 

contain "contestability," meaning that "When an AI system significantly impacts a person, 

community, group or environment, there should be a timely process to allow people to challenge 

the use or outcomes of the AI system" (Department of Industry, Science and Resources, 

Australian Government). These rationales signal a move away from simply attribution to looking 

at responsibility as mapping out where decisions were taken, where human oversight happened 

(or perhaps did not), and where interventions were possible throughout their research. 
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Preserving Human Agency in an AI-Infused Future 

At its core, ensuring human agency in an AI-infused research environment means 

understanding how, by design, we can prioritize human values and human judgment. To this 

point, the WHO's AI guidance in health (2024) reminds researchers about the risk of "automation 

bias," the over-reliance on AI recommendations, and advocate for "meaningful human control" at 

critical decision-making points for decision-making. More broadly, this principle extends beyond 

health, into the entirety of the scientific endeavor. Agent Laboratory's co-pilot mode was one 

possible implementation: AI systems that augment human capacities, while firmly indicating 

boundaries using human oversight. Research institutions might consider implementing what the 

EU framework terms "human in the loop" requirements, obligatory decision points where human 

researchers must consciously assess AI agents’ recommendations, rather than relying on them 

passively. These endeavors contribute to UNESCO's notions of "Human Centric AI" to augment 

human intelligence rather than replace it, in domains where we have various promising new 

forms of intelligence as partners: we must retain our understanding of, and purpose for, 

knowledge; namely, to help us understand and improve the human condition (UNESCO). 

 

Conclusion: Navigating the Co-Intelligent Future 

The emergence of AI scientists represents a significant development in how knowledge is 

created and validated. Whether it's Zochi's autonomous articles, AlphaFold a novel science, 

evidence that AI can do what we call "creative" equivalents, and Agent Laboratory's anticipated 

future of disbursed intelligence, we have crossed a line. We no longer have to ask if AI can do 

"real" research, but hear the challenge of coordinating our new co-intelligent world. 
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The examples we looked at demonstrate one obvious reality: the change is happening 

now. While we discuss philosophical implications, AI systems are hypothesizing, designing 

experiments, getting peer-reviewed articles published etc. The frameworks we are developing - 

frameworks around attribution, responsibility, education, collaboration, etc.- will shape the 

extent to which this change enhances human capacity or undermines human agency. If we shift 

this work into the future, we will concede those important decisions to market forces and 

technological momentum rather than make a conscious choice. 

Moving forward requires adapting our understanding of human intelligence in science—

recognizing that humans and AI systems bring complementary capabilities to the research 

process. The future of science exists in human-AI teams where machine pattern recognition 

meets human intuition, where automated exploration meets ethical agency, where the alien 

intelligence of AI opens our mind to what human intelligence alone cannot. 

Any transformation involves risks and valid anxiety. For example, critics rightfully draw 

attention to AI's propensity to hallucinate, the environmental impact of 'harmful' computing, and 

the risk of deskilling human researchers (who can conveniently move (and relinquish 

responsibility for) decision-making into machinery). These are significant concerns, but they 

have to be balanced against the frameworks that are attempting to maximize AI's positive 

potential while still acknowledging human decision-making and judgement. 

In this co-intelligent future, human judgment remains essential for determining not just 

what can be discovered, but what should be discovered and why. 
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