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The Mirror That Builds Itself: Co-Intelligence and the Recursive Revolution in Science

In May 2025, a significant milestone occurred when reviewers at the Association of
Computational Linguistics reviewed and accepted papers without realizing they had no human
input. Zochi is an Al that, with minimal human supervision, completed the entire scientific
process on its own: it identified gaps in research, created experiments, did analysis, created
manuscripts, and persuaded human experts that its manuscripts should be published. Not only
were they accepted, but they proposed entirely new research methods that outperformed
traditional approaches. One notable innovation was CS-ReFT, a technology that enabled a 7
billion parameter model to exceed GPT-3.5 performance while using only 0.0098% of the
trainable parameters. More than just a technical achievement, this moment represents the first
time when Al systems can now advance the very field that created them.

This paper explores how the rapid development of Al systems that are capable of
performing genuine scientific research is not an ordinary advancement in the automation of
knowledge, but rather, a significant shift in how knowledge is created. This development
suggests we may need to reconsider the role of human agency in science. Analyzing four
representative systems that crossed significant thresholds between 2024 and 2025 (Zochi's
recursive self-improvement through its research on Al; AlphaFold's profound transformation of
biological discovery; demonstrating empirical evidence that Al is equal to human researchers in

creativity; and, the emergence of multi-agent frameworks for collaborative investigation) I
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contend that we are at the edge of new form of "co-intelligence" which challenges the very
foundations upon which we conceive humans as the only purposeful agent of scientific progress.
This transformation is not coming; it has already arrived, as demonstrated by Al systems already
being published in peer-reviewed journals, predictably outperforming human researchers or
human prediction about the outcome of research, and most telling, performing new research for
the purpose of improving its own Al capability. The recursive development of Al systems
performing research to improve and modify Al systems results in an accelerating feedback loop
that may influence how science is conducted and understood. Specifically, these four systems -
while each groundbreaking by themselves - demonstrate the contours of the emergence of a new
scientific ecosystem, with increasingly fuzzy lines drawn between the human contribution and

machine contributions.

From Automation to Co-Intelligence: A Paradigm Shift

Three phases have existed in the relationship between artificial intelligence and scientific
discovery, each with a new shift in agency and capacity. In the early development of artificial
intelligence, researchers employed symbolic approaches that rely on the explicit representation
of knowledge using formal languages—including formal logic—and the manipulation of
language items (‘symbols') by algorithms to achieve a goal (Hitzler et al.). These symbolic
systems functioned as sophisticated computational tools that can make explicit use of expert
knowledge, and are to a high extent self-explanatory, as their algorithms can be inspected and
understood in detail by a human. This transparency meant that human operators maintained
complete control over the systems' operations and outputs. However, these early symbolic

systems were brittle with respect to outliers and data errors, and are far less trainable, requiring
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careful human oversight to define problem spaces, encode domain knowledge, and interpret
results (Hitzler et al.). The relationship between humans and these Al systems was
fundamentally asymmetric, with humans serving as the primary source of knowledge and
decision-making while the systems executed formal logical operations within strictly defined
parameters.

The second phase, emerging in the late 2010s, introduced Al as specialized problem-
solvers. Computer simulation was pioneered as a scientific tool in meteorology and nuclear
physics in the period directly following World War II, and since then has become indispensable
in a growing number of disciplines (Winsberg). AlphaFold not only figured out the shapes of
proteins, but it also solved a grand challenge in biology that had existed for 50 years. However,
these breakthrough systems were working in narrow domains, answering questions given to them
rather than investigating various questions. They were like virtuosos who could only play one

instrument in the scientific orchestra; amazing, yet limited (Wang et al.).

The Third Phase: Systems That Think About Science

The third phase—our current moment—trepresents a qualitative leap. Systems like Zochi
don't merely solve problems; they identify problems worth solving, design methodologies to
investigate them, and communicate findings in the language of science. That is an important
transition from automation to "co-intelligence" (Schleiger et al.). Automation replaces human
effort with mechanical efficiency. Co-intelligence creates a new form of scientific agency that
operates alongside human researchers, capable of independent insight while remaining

fundamentally collaborative.
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The 2024-2025 breakthrough wasn't a single event but a convergence: Al systems
achieving peer-reviewed publication, demonstrating metacognitive awareness of their own
limitations, and most critically, improving their own architectures through research. The Al
Scientist-v2, an end-to-end agentic system capable of producing the first entirely Al generated
peer-review-accepted workshop paper (Sakana AI). When Zochi developed CS-ReFT to improve
efficiencies of language models, it crossed over from the real world into a domain of Al

performing Al research—this creates a recursivity that accelerates its own evolution.

Case Study 1: Zochi's Recursive Revolution

In order to understand this spectrum, one must recognize four levels of research
capability of Al, which are execution (following protocols), exploration (testing hypotheses),
generation (creating hypotheses), and recursion (creating the systems that create hypotheses).
Early systems like IBM's Watson were pure execution systems. Watson had high intelligence in
that it could follow a well-defined set of protocols to answer many Jeopardy questions (IBM).
Zochi is an example of generation when it ideated multiple capabilities. The hardest transition
was achieved when Zochi's CS-ReFT breakthrough was able to recursively improve itself. This
represents an important transition to recursive Al science—systems that can improve their own
capabilities through research.

The system's results show clear promise for true research inquiry. The CS-ReFT
(Compositional Subspace Representation Fine-tuning) offered another fine-tuning method and
another way of using the Llama-2-7B sufficient to almost out-perform the GPT-3.5 by less than
0.0098% of trainable parameters (Intology Al). The Siege framework clearly detailed where the

state-of-the-art LMs were weakest and even predicted some instances of the "partial compliance"
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not seen or documented by human researchers. EGNN-Fusion achieved performance baselines in
the prediction of protein-nucleic acid bindings while utilizing over 95% less parameters
(Intology Al).

What distinguishes Zochi from sophisticated research assistants is its capacity for
autonomous scientific judgment. The system autonomously recognized that multi-turn
jailbreaking would be increasingly important, came to the conclusion that their first approaches
were yielding diminishing returns, and has adapted accordingly to use partial compliance
signals—this is exactly the type of pattern recognition and reasoning we would expect
experienced scientists to use (Intology Al). Throughout development, Zochi submitted multiple
extensions, but not before it abandoned multiple practices such as memory mechanisms, without
any human help. Recognizing when a research direction has been exhausted and pivoting
accordingly represents tacit knowledge acquired through years of scientific experience.

Additionally, Zochi's work in the Al systems space - developing language models in CS-
ReFT, and investigating Al safety in Siege - is recursive self-improvement. When an Al system
autonomously improves the technologies that allow it to exist, we have reached a recursion
within recursion, entering new space and perhaps self-accelerating improvement paths, perhaps
an exponential rather than linear trajectory of improvement. Each improvement also leads to new
forms of research, and allows for further improvements which leads to further possibilities for
improvement, with a feedback loop never before achieved in scientific history. The fact that
Zochi, across, five human-based reviewers, achieved an average score of 6.6 is evidence that we

are not only dealing with technical sophistication, but with science as well (Intology Al).

Case Study 2: AlphaFold's Grand Challenge Victory
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While Zochi demonstrates Al's capability for autonomous end-to-end research, skeptics
might argue this represents merely sophisticated automation rather than genuine scientific
insight. To address this concern, we must examine whether Al can tackle complex problems that
have resisted solutions for decades. Recent analysis supports this skeptical view. Epoch Al
argues that "in reality, most R&D jobs require much more than abstract reasoning skills" and
notes that "the most critical aspects of the job appear to require hands-on technical skills,
sophisticated coordination with others, specialized equipment use, long-context abilities, and
complex multimodal understanding" (Erdil and Barnett). Their analysis concludes that the
common assumption of Al "first automat[ing] science, then automat[ing] everything else" is
"likely wrong" because "by the time Al reaches the level required to fully perform this diverse
array of skills at a high level of capability, it is likely that a broad swath of more routine jobs will
have already been automated" (Erdil and Barnett). However, this skeptical framework may
underestimate Al's capacity for breakthrough discoveries when applied to well-defined scientific
problems. AlphaFold's solution to protein structure prediction—a challenge that stumped
scientists for over 50 years—suggests that Al can transcend mere automation to achieve genuine
scientific insights that fundamentally advance human knowledge.

AlphaFold exemplifies a different paradigm of Al's contribution to science: not
autonomous research generation, but the resolution of grand challenges that have stymied human
researchers for generations. The protein folding problem—predicting a protein's three-
dimensional structure from its amino acid sequence—tepresents one of biology's most enduring
mysteries since Christian Anfinsen's 1972 Nobel Prize-winning hypothesis that structure should

be determinable from sequence alone (Google DeepMind; Kresge et al.). For fifty years, this
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computational challenge limited practical applications, limiting drug discovery, disease research,
and our fundamental comprehension of life's molecular machinery (Dill and MacCallum).

In 2020, AlphaFold achieved what had eluded scientists for decades: accurately
predicting the three-dimensional structure of proteins from their amino acid sequences. The
system didn't just advance existing approaches—it effectively solved the protein folding
problem. When tested on the difficult CASP14 protein targets, AlphaFold's predicted structures
achieved a median backbone accuracy of 0.96 Angstrdms compared to experimentally
determined structures. To put this in context, the width of a carbon atom is 1.4 A, and the next
best computational method achieved only 2.8 A accuracy. AlphaFold's predictions approached
the resolution limits of the experimental methods themselves used to determine the true
structures (Jumper et al.).

What sets AlphaFold's development apart is its sophisticated manipulation of human
science knowledge and machine learning ingenuity. The system makes use of evolutionary
information through multiple sequence alignments, uses the physical and geometric constraints
of protein structures, and employs a unique neural network architecture that reasons about spatial
relationships. The "Evoformer" blocks view protein structure prediction as a graph inference
problem, not as vectors in 3D space, while the iterative refinement process mimics how
structural biologists think about constructing and refining mental images of molecular models
(Jumper et al.). This is not black-box learning, but a principled approach that encodes decades of
biochemical knowledge into a computational architecture.

The transformative impact goes beyond any computational success. AlphaFold was
already enabling breakthroughs in antibiotic resistance understanding, advancing COVID-19

research, and opening drug discovery workflows up to years of experimental work, within
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months of its release. By 2025, the AlphaFold database has more than 214 million structure
predictions, and has allowed structural information to be democratized across global researchers
(Varadi et al.). This is what Al represents as a great equalizer in science—laboratories which
could not afford to buy expensive crystallography equipment now have near-experimental
accuracy to structural data.

AlphaFold's success could provide us with lessons for Al-aided discovery moving
forward: at a high level, Al will most likely contribute to science by not replacing human
scientists, but solving bottleneck problems that impede progress by humans. It demonstrates how
Al that is built around well-defined domain expertise can generate breakthroughs, far better than
pure data driven learning. It has provided proof of concept that Al can shorten timelines of
scientific advancement from decades to months, and alter the range of questions that researchers

will even bother to ask.

Case Study 3: Measuring Machine Creativity

While AlphaFold's success in solving the protein folding problem illustrates the power of
Al for making a transformational discovery, it did so in accordance with clear boundaries
established by human researchers. This leaves an important question: is it possible for Al
systems to develop truly novel research directions, or do they merely excel at one human-defined
task? The Stanford study conducted by Si, Yang, and Hashimoto addresses this question squarely
by engaging in rigorous empirical testing, asking whether Al can match human researchers in the
fundamental creative aspect of science: generating original research ideas.

The Stanford study by Si, Yang, and Hashimoto (2025) represents a watershed moment

in understanding Al's creative potential, employing rigorous empirical methods to address a
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deceptively simple question: can large language models generate research ideas comparable to
human experts? Their experimental design recruited over 100 NLP researchers in a carefully
controlled comparison that standardized idea format, matched topic distributions, and
implemented blind review protocols—methodological rigor rarely seen in creativity evaluation
studies.

The headline finding challenged conventional wisdom about machine creativity: Al-
generated ideas were rated as significantly more novel than human expert ideas (p < 0.05) by a
panel of 79 expert NLP researchers, with mean novelty scores of 5.64 (Al) vs 4.84 (humans) on a
10-point scale (Si et al). These reviewers—primarily PhD students and postdocs from 32
institutions who had an average of 635 citations and predominantly had experience reviewing for
major Al conferences—evaluated the ideas through blind review. This difference remained
statistically significant based on several hypothesis tests and controlled for potential confounding
effects, including reviewer bias and topic selection. The novelty advantage does appear to come
with some trade-offs—the same expert reviewers scored Al ideas slightly lower on feasibility,
indicating a tendency toward ambitious, but perhaps impractical, ideas.

Beyond the numerical results, the qualitative analysis revealed distinct creative signatures
that differentiated Al and human approaches. Al ideas made more conceptual leaps and
synthesized ideas from more disparate domains than current human experts would typically have
done (Si et al.). One Al idea tied concepts from quantum mechanics to uncertainty quantification
in language models; another applied fractal geometry principles to semantic understanding.
Human ideas, by contrast, showed richer grounding in existing research trajectories and practical
constraints, representing accumulated tacit knowledge about what researchers consider feasible

to pursue. As the Stanford researchers noted in their analysis of reviewer comments, human ideas
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tended to build incrementally on known techniques and well-established problems, while Al
ideas ventured into more unconventional territory—sometimes brilliantly, sometimes
impractically (Si et al.).

These results reveal less about creativity's essential nature than about how expert
researchers perceive and evaluate it. The study suggests that the 79 NLP researchers who served
as reviewers associated novelty primarily with unexpected conceptual combinations rather than
deep domain expertise—a reflection of their particular academic training and evaluation criteria.
Al unconstrained by the cognitive anchoring that shapes how human researchers approach
problems, can generate combinations that fall outside conventional disciplinary boundaries,
which these reviewers found refreshingly novel (Si et al.). However, the researchers identified a
major constraint: while Al systems generated vast quantities of ideas (4,000 per topic), their
diversity was surprisingly limited—only about 5% were truly distinct after removing near-
duplicates. This paradox—high individual novelty as judged by human reviewers, but low
collective diversity—suggests that Al's "creativity" at the moment operates differently than
human creativity, producing variations on themes rather than fundamentally different
approaches.

This paradox - high individual novelty, but low collective diversity - reveals Al's present
creative capabilities to be strong but limited. These systems can produce surprising individual
outputs, but when it comes to systematic exploration, these systems struggle, as exemplified by
researcher communities. The import of this is significant: Al should be considered not as a
replacement for human creativity, but rather, a complement to it which can produce novel ideas
for humans to evaluate, filter, and develop. The future of research ideation may be in a scenario

in which we are not choosing between human and machine creativity, but designing systems to
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take advantage of both emergent properties - human decision-making and contextual knowledge

paired with Al's ability to make unexpected combinations of concepts.

Case Study 4: Agent Laboratory and Collaborative Intelligence

The empirical evidence that Al can generate research ideas as novel as those from human
experts completes a trilogy of capabilities: autonomous execution (Zochi), breakthrough
problem-solving (AlphaFold), and creative ideation (Si et al.). Yet these examples might suggest
Al will simply replace human researchers. Agent Laboratory offers a different vision—one
where Al amplifies rather than supplants human intelligence through sophisticated multi-agent
collaboration. This final example points toward the co-intelligent future, where the question is
not whether Al or humans will conduct research, but how they'll work together to achieve what
neither could accomplish alone.

Agent Laboratory represents a pivotal shift from isolated Al capabilities to integrated
research workflows, embodying a vision where human creativity guides distributed machine
intelligence. Developed by Schmidgall and colleagues, this system transforms abstract research
ideas into implemented code and comprehensive reports through orchestrated multi-agent
collaboration—not to replace human researchers but to amplify their capacity for discovery
(Schmidgall et al.).

The architecture demonstrates complex design reasoning associated with the relationship
or partnership between humans and Al. There are three clear phases of the research process—
literature review, experimentation, and report writing—that are each specialized but bounded;
however, there are also clear interfaces where humans can intervene. The system comprises

agents that do not act as black box agents, but rather represent transparent collaborators: the
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literature agent surfaces relevant papers with citations and relevance rationale, the
experimentation agent provides iteration and reasoning of modifications to existing code, and the
report writer produces reports in the style of academic articles. These separate processes allow
researchers to take control at any point in the research process, either to correct the course of the
research or to inject domain knowledge.

Empirical validation shows both potential and limitations of the present. Agent
Laboratory has secured four medals (two gold, one silver, one bronze) on MLE-bench
challenges, compared to OpenHands and AIDE securing two medals. Agent Laboratory showed
above-median human performance on over 60% of the benchmarks (6 of 10) (Schmidgall et al.).
The MLE-solver is a crucial component, particularly for improving code with repeated use of the
REPLACE and EDIT commands for successive iterations to improve the results of the
experiments systematically (Schmidgall et al.). Yet human evaluation scores tell a more nuanced
story: while researchers rated the system's usefulness at 4.4/5, report quality peaked at 3.4/5 and
experimental quality at 3.2/5—well below the 5.9 average for accepted NeurIPS papers.

The cost-performance tradeoff shows useful deployment implications. Running on GPT-
40 costs only $2.33 and takes less than 20 minutes, while ol-preview is of higher quality at
$13.10 and takes 100 minutes (Schmidgall et al.). This can inform practical deployment
decisions—almost all deployment environments have available computational resources,
whether they are entry-level laptops or GPU clusters—opening the door to equal access Al-
enabled research. The most interesting finding among all the scores was the co-pilot mode
performance. The human inputs improved the overall score from 3.8 to 4.38 and the quality score
from 2.5 to 3.25, which suggests that human input is still necessary and very helpful for

improving outputs from good to excellent (Schmidgall et al.).
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Agent Laboratory's vision extends beyond automation to genuine augmentation. By
handling routine implementation and documentation tasks, it frees researchers to focus on
creative problem formulation and critical evaluation. The system does not pursue artificial
general intelligence but rather artificial specialized assistance—a constellation of focused agents
that collectively amplify human research capabilities. This distributed intelligence model, where
multiple specialized agents collaborate under human guidance, may prove more robust and
controllable than monolithic Al systems, pointing toward a future where research teams

seamlessly blend human insight with machine execution.

The Transformation of Research Practice

The distributed intelligence model emerging from these examples—Zochi's autonomous
execution, AlphaFold's breakthrough problem-solving, the Stanford study's evidence of creative
ideation, and Agent Laboratory's collaborative workflows—represents more than isolated
innovations. Together, they herald three transformative changes that will fundamentally reshape
research methods within the next decade.

The most direct change for research teams is the team itself. While we have romanticized
the view of the lone genius making breakthroughs, a new model of team has emerged: principal
investigators leading hybrid teams with Al agents acting as committed research assistants. In this
new model, the principal investigator asks very high-level questions about the interactions of
proteins, while Al agents scour the literature in every conceivable language, devise experiments
with as many optimization variables as the principal investigator wants, and determine
unexpected links to related fields of research in materials science or quantum chemistry.

Graduate students, freed from repetitive optimization tasks, can focus on higher-level work—
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interpreting complex results, developing novel hypotheses, and creating new theoretical
frameworks. Their value lies not in manual data processing but in creative synthesis and critical
thinking that builds on Al-generated insights. The role of the principal investigator shifts from
being the lead experimenter to becoming the conductor of research, with all good researchers
working in parallel to maintain trajectory, and when all contributions converge, which includes
the Al agents as well as members of the team, their roles supplement the team. This is not about
taking jobs away from human researchers, but a transformation of role, akin to using a word
processor instead of a pencil and paper, one of the activities didn't displace another, but writing
fundamentally changed.

Beyond team dynamics, the fundamental tempo of scientific discovery will accelerate
dramatically. Where traditional research cycles are measured in months or years, Al-augmented
teams will compress iteration loops to days or hours. Agent Laboratory's ability to generate and
test code implementations in minutes presages a future where hypotheses undergo rapid proto-
testing in simulation before committing to expensive wet-lab validation. Such acceleration would
enable drug discovery pipelines where Al agents generate thousands of molecular variants
overnight, computationally screen them for desired properties, synthesize literature evidence for
the most promising candidates, and present researchers with a prioritized list complete with
suggested synthesis pathways each morning. The bottleneck shifts from ideation and initial
testing to human judgment about which Al-validated hypotheses merit real-world resources. This
acceleration changes existing processes and enables research strategies based on parallel
exploration of hypothesis spaces previously too large to navigate systematically.

The third transformation concerns interdisciplinary research. Al's ability to process

information across domains without disciplinary boundaries can facilitate connections between



Fu 15

previously unrelated fields. The Si et al. study reveals Al's propensity for unusual conceptual
combinations—quantum mechanics metaphors applied to language models, fractal geometry
informing semantic analysis. Al agents could be thought of, on a research project team scale, as a
generalist translator between fields, recognizing when techniques or insights from topology
might provide equivalent solutions for problems in protein folding, or when ecosystem dynamics
models might provide insight into cancer metastasis. Al agents will not only find the analogy,
but will also actively transpose the method, developing hybrid methods that no individual
specialist within a discipline would develop. This cross-disciplinary approach is supported by
research showing that "combining Al with other fields is not without challenges. Like any time
when fields synergize, barriers in communication arise, due to differences in terminologies,
methods, cultures, and interests" (Kusters et al.). Yet as Google Research's recent work on Al co-
scientists demonstrates, "many modern breakthroughs that have emerged from transdisciplinary
endeavors" exemplify this potential—from CRISPR's Nobel Prize-winning combination of
microbiology, genetics, and molecular biology to Al's own advancement (Gottweis et al.).
According to Nature's Al for Science 2025 report, "Al excels at integrating data and knowledge
across fields, breaking down academic barriers and enabling deep interdisciplinary integration to
tackle fundamental challenges" (Nature).

Kusters et al. provide compelling evidence for this interdisciplinary potential, arguing
that "the relationship between Al and interdisciplinary research must be considered as a two-way
street." They reveal how Al can facilitate "exploratory analyses" to "find new, interesting
patterns in complex systems or facilitate scientific discovery," citing examples from drug
discovery, new material development, and even the discovery of new physical laws. The authors

specifically point to the Frontier Development Lab—"a cooperative agreement between NASA,
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the Seti Institute, and ESA set up to work on Al research for space science, exploration and all
humankind"—as an exemplar of successful cross-pollination between fields. This systematic
collaboration demonstrates that while "barriers in communication arise, due to differences in
terminologies, methods, cultures, and interests," the potential benefits far outweigh these
challenges when properly managed.

The emerging consensus suggests that Al's role in science extends beyond mere tool use
to become what might be termed a "cognitive bridge" between disciplines. Just as the microscope
revealed previously invisible worlds and sparked new fields of study, Al's pattern-recognition
capabilities across vast, heterogeneous datasets may reveal connections that human researchers,
constrained by disciplinary training and cognitive limitations, simply cannot see. This is not to
diminish human creativity but to acknowledge that the combinatorial explosion of possible
connections between fields has grown beyond any individual's capacity to explore. Al systems,
unburdened by academic territoriality or the path dependencies of specialized training, can serve
as intellectual scouts, identifying promising territories for human researchers to explore more
deeply. The challenge ahead lies not in whether such interdisciplinary synthesis is valuable—the
evidence clearly supports its transformative potential—but in developing the institutional
frameworks, evaluation metrics, and collaborative protocols that can harness this capability

while maintaining scientific rigor and human agency in the research process.

Reimagining Scientific Institutions
Yet all transformations carry risks. The democratization of research through Al has
already begun producing what researchers at the University of Surrey describe as "a flood of

'low-quality' research papers that threaten to damage the 'foundations of scientific rigour™
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(Rowsell). A recent analysis found that papers using the NHANES health database increased
from just four annually between 2014-2021 to 190 in 2024 alone, with many following formulaic
templates and making misleading correlations between complex conditions and single variables
(O’Grady). This acceleration of research output outpaces our ability to verify results—a
challenge compounded by what researchers identify as "REBs [research ethics boards] are not
equipped enough to adequately evaluate Al research ethics" and the absence of standard
guidelines for assessment (Bouhouita-Guermech et al.). Although interdisciplinary Al
connections can provide breakthrough insights, they also risk what researchers term "fabricated
responses" when Al systems make conceptual leaps across fields without proper validation
(Brainard). As one analysis warns, Al functions as "a mirror to ourselves" complete with biases,
potentially amplifying flawed connections that entire research programs may later need to
discard (Chubb et al.).

The integration of Al into research workflows demands corresponding evolution in the
institutional structures that govern science. As capabilities demonstrated by systems like
ChemCrow and Agent Laboratory become routine, academic institutions and funding bodies face
pressure to reimagine fundamental processes that have remained largely unchanged for decades.
ChemCrow, developed at EPFL, exemplifies this transformation by autonomously planning and
executing chemical syntheses, including "an insect repellent and three organocatalysts" while
discovering novel chromophores (M. Bran et al.). Similarly, Agent Laboratory achieves "an 84%
decrease" in research expenses compared to previous methods, fundamentally altering the
economics of scientific discovery (Schmidgall et al.). These advances are forcing institutional
adaptation across multiple dimensions. Universities are establishing new organizational

structures, with the National Endowment for the Humanities awarding "$2.72 million for five
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colleges and universities to create new humanities-led research centers" specifically focused on
Al's societal impact (National Endowment for the Humanities). Yet institutions struggle to keep
pace—a 2024 EDUCAUSE study found that "only 23% of respondents indicated that their
institution has any Al-related acceptable use policies already in place" (Robert). Funding
agencies face particularly acute pressures to reimagine peer review processes that have governed
science for decades. While NIH banned the use of Al tools for peer review citing confidentiality
concerns (Kaiser), AAAI launched pilot programs incorporating large language models into their
review process (Association for the Advancement of Artificial Intelligence). This divergence
reflects deeper tensions as institutions grapple with Al's dual nature as both a research tool and a
disruptive force. As former Google CEO Eric Schmidt observes, Al enables experiments "at a
rate no human could match," fundamentally shifting how scientific discovery occurs (Schmidt).
The result is a scientific ecosystem under transformation, where traditional structures—from
laboratory workflows to grant evaluation processes—must evolve or risk obsolescence. The
pressure extends beyond individual institutions; with NSF's National Al Research Institutes now
connecting "over 500 funded and collaborative institutions," the entire research infrastructure is
being reimagined for an Al-enabled future (U.S. National Science Foundation).

These operational changes in research practice necessitate equally fundamental reforms
in how science is funded and evaluated. Traditional grant applications, predicated on detailed
five-year plans, become anachronistic when Al can generate and test hundreds of hypotheses in
weeks. Forward-thinking funding agencies are already shifting toward adaptive funding
models—initial seed grants followed by rapid iteration based on Al-validated preliminary results.
NSF has implemented RAPID proposals for Al research that can provide "up to $200K and up to

one year in duration" for time-sensitive studies (U.S. National Science Foundation), while the
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Spencer Foundation offers "$25,000 grants for activities to address immediate needs" with
decisions made within weeks rather than months (Spencer Foundation). The UK's Al Security
Institute takes this further with an iterative model where "Shortlisted applicants will work with
an AISI Research Sponsor to iterate and complete their full application" (The Al Security
Institute). These emerging frameworks point toward a future where researchers receive modest
funding to deploy Al agents for hypothesis generation and initial validation, with successful
directions automatically triggering larger awards—a stark departure from the rigid, multi-year
commitments that have defined research funding for decades.

Peer review, too, will need to evolve beyond human-only evaluation. Al systems could
pre-screen submissions for methodological soundness, statistical power, and literature grounding,
allowing human reviewers to focus on novelty, impact, and ethical considerations. The irony is
not lost: Al systems reviewing research conducted by other Al systems, with humans serving as
meta-reviewers ensuring the entire process maintains scientific integrity. Some journals are
already establishing "AI methodology" sections where researchers detail not just their
experimental methods but their Al collaboration protocols—which models were used, how
outputs were validated, what human oversight was applied. Multiple Al-specific reporting
guidelines have emerged, including MINIMAR (MINimum Information for Medical Al
Reporting) which "sets the reporting standards for medical Al applications" across four main
domains, and CLAIM (Checklist for Artificial Intelligence in Medical Imaging) which "outlines
the information that authors of medical-imaging machine learning articles should provide"
(Hernandez-Boussard et al.; Klontzas et al.). Beyond medical fields, Elsevier requires authors to
"insert a statement at the end of their manuscript... entitled 'Declaration of Generative Al and Al-

m

assisted technologies in the writing process" (Elsevier). The publishing landscape itself is
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beginning to bifurcate: traditional journals maintain strict policies—Science journals state that
"text generated from Al... cannot be used in papers published in Science journals... without
explicit permission from the editors" (UT Southwestern Medical Center)—while new venues
embrace human-Al collaboration. Digital Discovery, launched by the Royal Society of
Chemistry, explicitly publishes research "at the intersection of chemistry, materials science and
biotechnology" using "machine learning, Al and automation tools" (Royal Society of
Chemistry). Similarly, NEJM AI and JMIR Al have emerged as dedicated journals for Al
applications in clinical medicine and health settings (NEJM Al; JMIR Publications). These new
categories are developing distinct evaluation criteria—assessing not just findings but the quality
of human-AlI interaction, the transparency of Al contributions, and the robustness of human
oversight mechanisms. Early pioneers in this space are establishing standards that will shape how
co-intelligent research is conducted, reviewed, and disseminated for decades to come.

Among institutional frustrations, the issue of recognition and credit emerges as
particularly complex. Attribution presents the greatest challenge: when Al systems contribute
critical insights or forge connections that lead to breakthrough discoveries, the mechanisms for
assigning credit remain unclear and contentious. The Committee on Publication Ethics (COPE)
has established a firm boundary, stating that "Al tools cannot meet requirements for authorship
as they cannot take responsibility for submitted work" (Committee on Publication Ethics). This
unanimous rejection of Al authorship by major publishers—implemented within months of
ChatGPT's release—reflects deeper anxieties about accountability in science. Current authorship
models, which rely on assumptions of human-only contributions, struggle to navigate this new
reality where Al can generate novel hypotheses yet cannot sign copyright agreements or defend

its work. Initial efforts to address this gap include standardized disclosure frameworks, with
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Elsevier requiring authors to declare: "During the preparation of this work the author(s) used
[NAME TOOL/SERVICE] in order to [REASON]" (Elsevier). Yet these templates sidestep
fundamental questions: if an Al system identifies the key experimental design that enables a
Nobel-worthy discovery, who deserves recognition—the Al developers who created the
capability, the researchers who deployed it strategically, or both? This multi-stakeholder problem
reveals how traditional binary authorship models fail to capture the nuanced realities of human-
Al collaboration. Academic institutions face immediate practical challenges, with only 23%
having Al-related acceptable use policies as of 2024 (Chegg), leaving tenure committees without
frameworks for evaluating researchers whose productivity soars through Al collaboration. The
comparison becomes unavoidable: is a researcher who publishes fifty Al-assisted papers
annually more or less valuable than one producing five fully human-generated studies? Evidence
suggests Al can increase writing productivity by 40% (Noy and Zhang), yet a University of
Surrey study documented a 47-fold increase in papers using certain datasets between 2021-2024,
many showing superficial "data dredging" practices (Rowsell). This tension between quantity
and quality threatens the very foundations of academic evaluation, suggesting that attribution
frameworks must evolve beyond simple disclosure to address how we fundamentally value

different types of intellectual contribution in an age of co-intelligence.

The Education Revolution: Training Co-Intelligent Scientists

If we want to change the way science is done, we have to change how we educate future
scientists. Graduate education emerges as the most critical intervention point, yet evidence
reveals a striking gap between visionary proposals and concrete implementations. While

Carnegie Mellon University pioneered the nation's first undergraduate Al degree in 2018, now
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ranked #1 globally, doctoral programs lag significantly behind (Carnegie Mellon University).
The traditional PhD model, designed to develop independent investigators, faces pressure to
evolve toward what some theorists call "conductors of research"—though academic literature
reveals this metaphor remains largely undefined. The closest practical application appears in
software engineering contexts where developers orchestrate multiple Al agents, measuring
success by "time between disengagements" rather than traditional metrics. This conceptual
vacuum suggests the field struggles to articulate what Al-integrated doctoral training should
actually achieve. Core curricula show more concrete progress: the OECD/European Commission
AlLit Framework establishes 22 competencies across four domains—Engaging with Al,
Creating with Al, Managing Al, and Designing Al—providing a blueprint for expanding beyond
traditional statistics and experimental design (OECD Education and Skills Today). Stanford's
framework adds critical dimensions of rhetorical literacy for prompt engineering and ethical
reasoning, recognizing that technical proficiency alone proves insufficient (Stanford University).
Heinrich Heine University demonstrates practical implementation through structured 10-credit
lab rotations where Al master's students engage in real-world data analysis across university,
research, and industry settings (Heinrich Heine University Diisseldorf). Yet qualifying exams
remain surprisingly unchanged—Stanford's Computer Science exams maintain traditional
formats without Al synthesis components, suggesting institutional inertia in assessment methods.
The vision of "hybrid dissertations" faces similar challenges: while the University of Toronto
mandates supervisory approval and documentation for Al tool usage in theses, actual examples
of dissertations fundamentally integrating traditional and Al methodologies remain "rare"
(University of Toronto School of Graduate Studies). This implementation gap reveals a deeper

tension: institutions rapidly develop policies—with universities treating unauthorized Al use as
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academic misconduct—while lacking pioneering examples that demonstrate effective
integration. The Al Assessment Scale (AIAS) offers hope, showing 33.3% increases in pass rates
when students engage Al as teammates rather than tools (Perkins et al.). Yet the ultimate goal—
producing researchers who seamlessly integrate machine intelligence with human creativity
while knowing when to trust versus distrust Al insights—requires more than frameworks. It
demands a fundamental reimagining of scientific training that current institutions appear hesitant
to fully embrace, perhaps fearing that empowering students as "conductors" might diminish
traditional academic hierarchies. This educational transformation will succeed only when we
move beyond defensive policy-making to create environments where Al augments rather than

threatens scholarly development.

Philosophical Implications: Redefining Creativity and Intelligence

Yet even as we reconstruct the practical machinery of science—funding models, review
processes, educational curricula—we must confront deeper questions about what these changes
mean for our understanding of intelligence and creativity themselves.

As Al becomes a genuine partner in scientific discovery, it evokes some uncomfortable
questions regarding creativity and intelligence. Systems such as Si et al.'s ideation engine are
opening up genuinely novel forms of research and ChemCrow can autonomously plan
experiments, leaving us with a difficult challenge of discerning "real" creativity from "simple"
machine computation. At the moment, the advent of Al has called attention to the evolution of
philosophy, which is a quite significant change in our thinking representing a significant shift in

how we understand intelligence.
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The very real consequences of an Al partnership compel us to rethink some of our most
basic understandings of human uniqueness. For centuries, being a hypothesis generator and
experimental designer has been part of what it means to be human - there was a sacred barrier
between us and mere animals, and certainly between us and machines. And now, when an Al
system generates a testable hypothesis about turbulence in terms of linguistic models or right-
quantized semantic embeddings, it seems to achieve something that looks uncomfortably like
what we refer to as insight. When confronted by this experience the philosophical dilemma is not
whether these systems are being "truly" creative - that may not be a question to which there is a
definitive answer - but what their abilities reveal about creativity itself. Perhaps there was never
anything particularly magical about science creativity in humans: just a freakishly complex
matrix of patterns, permutations and combinations, passed through vast amounts of vulturized
corpus data of basic knowledge. If that is the case, it is just as likely that the ability to recombine
creatively is one that would be more useful to Al systems with larger amounts of knowledge and
limitless processing power. This is not to dismiss the value of human-centric creativity but to
provide an alternative context: that human beings create and invent not because they have special
access to the breakthrough of creativity but because they can ask relevant questions, make
judgements to distinguish what is important, coefficient to expand understanding, and situate
discoveries in a relevant context.

This change in our thinking requires us to create new vocabularies to make sense of
various forms of creative contributions. Traditional notions of scientific creativity emphasize the
sudden flash of insight, the intuitive jump, or having the discrete ability to see connections that
others cannot see. Al systems have a similar capacity, but arrive at very different modes of

success: exhaustive searches of the set of possibilities made possible by Al systems; systematic
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recombination of discrete concepts; and spotting patterns at scale beyond human capacity. It
leaves us with the question: Does creativity relate to the process or the outcome? This debate,
central to Moruzzi's (2025) analysis, divides "product-first" accounts that judge AlphaFold's
protein folding breakthrough by its transformative results from "process-first" perspectives
requiring "intentionality, agency, and autonomy" (Moruzzi). Yet this binary obscures a deeper
paradox: if creativity requires breaking rules, can a system that operates entirely within
programmed parameters ever be truly creative? Is it less creative if the Al system identifies a
transformative connection between quantum mechanics and protein folding because it has
examined millions of papers systematically instead of using intuitive thought like a human
scientist? MELVIN's discovery of "Entanglement by Path Identity" by connecting quantum
optics with graph theory—generating over 4,000 citations—suggests the answer may depend on
whether we value the journey or destination (Davies et al.). But more profoundly, it reveals how
Al's mechanical process can produce genuinely surprising results that reshape human
understanding, challenging our assumption that meaningful discovery requires conscious
experience. We may need to abandon singular definitions of creativity in favor of a taxonomy:
combinatorial creativity (where Al excels), interpretative creativity (where humans maintain
primacy), and hybrid creativity (emerging from human-AlI collaboration). This aligns precisely
with Boden's foundational framework distinguishing combinatorial, exploratory, and
transformational creativity, with evidence suggesting Al masters the first two while struggling
with genuine transformation (Moruzzi). The results of Si et al. (2024) provide compelling
empirical evidence: in a head-to-head comparison involving over 100 NLP researchers, "LLM-
generated ideas are judged as more novel (p < 0.05) than human expert ideas while being judged

slightly weaker on feasibility" (Si et al.). This result implies Al has a different "flavor" of
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creativity; that it is also relatively unconstrained by disciplinary limits that constrain human
creativity—yet here lies a crucial irony: being "unconstrained" by disciplines also means being
ungrounded in their deep methodological wisdom, historical contexts, and unwritten knowledge
that makes certain paths worth pursuing; that it is willing to develop unlikely combinations—but
Si et al.'s finding of "lack of diversity in generation" reveals a troubling paradox where
individual Al outputs appear more novel than human ideas, yet collectively converge on similar
solutions, suggesting Al explores a narrower slice of possibility space than its computational
power would suggest; that it sometimes lacks purposeful sense making, or the profound
consideration of background contextual meaning that makes the human version of insights,
meaningful. This limitation reflects not just technical deficiency but a fundamental
epistemological divide: Al operates in a space of correlations and patterns, while human
creativity emerges from lived experience navigating between meaning and truth. Si et al.'s
observation about "failures of LLM self-evaluation" points to an even deeper issue—without
genuine understanding, Al cannot distinguish between clever nonsense and profound insight,
between novelty that advances knowledge and novelty that merely rearranges symbols. The
emerging consensus suggests that rather than competing, these different creative modes may
prove most powerful in combination, yet this risks obscuring a critical question: in our rush to
enhance human creativity with Al's systematic power, might we be subtly redefining creativity
itself to value quantity of connections over quality of understanding, statistical surprise over
meaningful transformation? The true challenge lies not in determining whether Al is creative, but
in preserving what makes human creativity irreplaceable while harnessing Al's alien intelligence

to transcend our cognitive limitations.
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The deepest philosophical challenge concerns the very nature of scientific knowledge
itself. Most provocatively, Al's success in generating viable hypotheses challenges our
assumptions about the relationship between understanding and discovery. Human scientists pride
themselves on deep understanding—grasping not just correlations but causal mechanisms, not
just what but why. Al systems, operating through pattern recognition across vast datasets, seem
to bypass understanding entirely yet still generate actionable insights. The pragmatic answer
appears to be yes—AI systems can identify promising research directions without
"understanding" in any human sense. But this raises deeper questions about understanding itself.
Perhaps what we experience as understanding is itself a form of sophisticated pattern
recognition, albeit one enriched by embodied experience and emotional salience. Or perhaps
understanding and pattern recognition represent complementary ways of engaging with reality,
each powerful in different domains. The future of science may lie not in resolving this
philosophical tension but in leveraging both modes—AI's pattern recognition revealing hidden
structures, human understanding providing meaning and context. This synthesis suggests
scientific progress needs both the alien intelligence of machines and the situated understanding
of humans, working in concert toward truths neither could reach alone. While Al excels at
pattern recognition across vast corpora, the human capacity to imbue discoveries with
meaning—to understand not just correlations but significance for human flourishing—remains

irreplaceable.

The Attribution Crisis: Who Owns Discovery?
The attribution crisis was plainly evident when Zochi's papers were accepted at ACL

2025. Traditional models of intellectual property assume that the creators are human authors with
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legal personhood and moral rights, and fiduciary or economic interests. When Al systems
generate and identify a new optimization method (like CS-ReFT), who owns that intellectual
property—Intology Al (Zochi's creators), the researchers who deployed CS-ReFT, or no one?
Patent law currently maintains strict human-centric requirements: following Thaler v. Vidal, "the
Federal Circuit Court ultimately upheld the USPTO's decision, affirming that under the Patent
Act, an 'inventor' must be a natural person" (BitLaw). The USPTO's February 2024 guidance
clarified that "Al systems and other non-natural persons may not be listed as inventors on U.S.
patents and patent applications", though "Al-assisted inventions are not categorically
unpatentable" when "a human provided a significant contribution to the invention" (Sam Penti et
al.; United States Patent and Trademark Office). This creates a paradox: a PI cannot simply
claim inventorship through delegation. The guidance explicitly states that "merely recognizing a
problem and presenting that problem to an Al system is not enough to establish someone as an
inventor" and "simply owning or overseeing an Al system that is used in the creation of an
invention, without providing a significant contribution to the conception of the invention, does
not make that person an inventor" (Vidal; Sam Penti et al.). However, "designing or training the
Al system to solve a specific problem can be a significant contribution if it leads to the
invention", and "if an individual made a significant contribution through the construction of a
prompt, that could be sufficient" (BitLaw; Vidal). This framework may ultimately deter
investment in autonomous Al research while incentivizing researchers to overstate their
contributions—a form of "invention laundering" where human involvement is retroactively
emphasized to satisfy legal requirements that have not evolved with the technology.

Recent proposals attempt to address the attribution crisis in Al-generated content through

systematic disclosure frameworks. Avery et al.'s (2024) Artificial Intelligence Attribution (AIA)
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system introduces "a system that properly and seamlessly attributes Al text authorship" using
visual badges that delineate the nature of Al involvement—Research, Writing, Editing, or Al-
Free—drawing inspiration from how Creative Commons revolutionized copyright disclosure
(Avery et al.). The system employs "easily recognizable symbols that provide at-a-glance
information about Al's involvement in textual content creation," addressing what the authors
identify as "a fundamental gap between those demanding proper disclosure...and those struggling
to respond to this demand" (Avery et al.). Similarly, the proposed Generative Al Copyright
Disclosure Act of 2024 (H.R. 7913), introduced by Representative Adam Schiff, would require
developers to submit notices to the Register of Copyrights containing "a sufficiently detailed
summary of any copyrighted works used" in training datasets within 30 days of public release
(H.R. 7913, 2024, Sec. 2). This legislation aims to "ensure that copyright owners have visibility
into whether their intellectual property is being used to train generative Al models" through a
publicly searchable database (Kline, 2024). However, both frameworks face limitations when
confronting recursive improvements—when Al systems autonomously modify their own
algorithms or generate innovations without human guidance, these attribution models struggle to
assign meaningful authorship or accountability. The AIA's badge system assumes human
oversight at each stage, while the Copyright Disclosure Act presupposes identifiable training
data, yet neither framework adequately addresses scenarios where Al systems evolve beyond
their initial parameters through self-directed learning, creating outputs that may be several
iterations removed from any traceable human or copyrighted input.

We can consider a hypothetical situation: an NLP researcher uses Agent Laboratory to
develop a new language model architecture that completely revolutionizes machine translation,

creating real-time translation capabilities for endangered languages. After exploring patterns
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across thousands of papers, the system independently identifies an entirely new attention
mechanism. Attribution becomes harder. Who should we give credit to in this world? Should we
credit the researcher who initiated the investigation, the Agent Laboratory team, or perhaps

entirely new types of credit?

Frameworks for Responsibility in Co-Intelligent Science

Questions of responsibility prove even thornier. The research team at Google DeepMind
gets credit when AlphaFold makes a prediction for a protein structure upon which a drug
development program is based. However, whose responsibility is it if an adverse effect results
from a recommendation that originated from the Al system? If, for example, Agent Laboratory
hatches an experimental research project design which is issued with all necessary ethical
protocols and ends up unintentionally doing harm to the environment, how do you draw
responsible lines between the Al developers, the person who undertakes the project, and their
higher-level institutes? The 2021 UNESCO Recommendation on the Ethics of Al explicitly
states that, "Member States should ensure that Al systems do not displace ultimate responsibility
and accountability from humans," in the sense of human oversight. Similarly, the EU's Ethics
Guidelines for Trustworthy Al includes principles around accountability, requiring "auditability,
which enables assessing algorithms, data and the design process." Building upon this
conceptualization, Papagiannidis et al. (2025) suggest "responsible Al governance" frameworks
which focus on structural, relational, and procedural practices - noting that in Al systems,
responsibility occurs across several organizational levels. This articulation resonated with
"distributed responsibility frameworks" - ethical frameworks which recognize a multitude of

agents (human and artificial) in the link to successfully carry out actions thereby creating
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outcomes with a level of responsibility without losing accountability to the point of being
meaningless.

The Committee on Publication Ethics (COPE) has taken a definitive stance that "Al tools
cannot be listed as an author of a paper" because they "cannot take responsibility for the
submitted work" (Committee on Publication Ethics). Major journals including Science, Nature,
and JAMA have adopted similar policies, prohibiting Al co-authorship while requiring
disclosure of Al use. Science's editorial policies explicitly state that "Al-assisted technologies
[such as large language models (LLMs), chatbots, and image creators] do not meet the Science
journals' criteria for authorship and therefore may not be listed as authors or coauthors"
(Science). Similarly, Nature Portfolio declares that "Large Language Models (LLMs), such as
ChatGPT, do not currently satisfy our authorship criteria" (Nature). JAMA has implemented
policies that "preclude the inclusion of nonhuman Al tools as authors and require the transparent
reporting of use of such tools" (Flanagin et al.). This convergence across leading journals reflects
a consensus that while Al can assist in research, authorship requires human accountability and
responsibility (Harker). Yet these binary approaches—human or machine authorship—fail to
capture the nuanced reality of co-intelligence where human and Al contributions interweave
inextricably. More developed frameworks are coming out. Australia's Al Ethics Principles
contain "contestability," meaning that "When an Al system significantly impacts a person,
community, group or environment, there should be a timely process to allow people to challenge
the use or outcomes of the Al system" (Department of Industry, Science and Resources,
Australian Government). These rationales signal a move away from simply attribution to looking
at responsibility as mapping out where decisions were taken, where human oversight happened

(or perhaps did not), and where interventions were possible throughout their research.
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Preserving Human Agency in an Al-Infused Future

At its core, ensuring human agency in an Al-infused research environment means
understanding how, by design, we can prioritize human values and human judgment. To this
point, the WHO's Al guidance in health (2024) reminds researchers about the risk of "automation
bias," the over-reliance on Al recommendations, and advocate for "meaningful human control" at
critical decision-making points for decision-making. More broadly, this principle extends beyond
health, into the entirety of the scientific endeavor. Agent Laboratory's co-pilot mode was one
possible implementation: Al systems that augment human capacities, while firmly indicating
boundaries using human oversight. Research institutions might consider implementing what the
EU framework terms "human in the loop" requirements, obligatory decision points where human
researchers must consciously assess Al agents’ recommendations, rather than relying on them
passively. These endeavors contribute to UNESCO's notions of "Human Centric AI" to augment
human intelligence rather than replace it, in domains where we have various promising new
forms of intelligence as partners: we must retain our understanding of, and purpose for,

knowledge; namely, to help us understand and improve the human condition (UNESCO).

Conclusion: Navigating the Co-Intelligent Future

The emergence of Al scientists represents a significant development in how knowledge is
created and validated. Whether it's Zochi's autonomous articles, AlphaFold a novel science,
evidence that Al can do what we call "creative" equivalents, and Agent Laboratory's anticipated
future of disbursed intelligence, we have crossed a line. We no longer have to ask if Al can do

"real" research, but hear the challenge of coordinating our new co-intelligent world.
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The examples we looked at demonstrate one obvious reality: the change is happening
now. While we discuss philosophical implications, Al systems are hypothesizing, designing
experiments, getting peer-reviewed articles published etc. The frameworks we are developing -
frameworks around attribution, responsibility, education, collaboration, etc.- will shape the
extent to which this change enhances human capacity or undermines human agency. If we shift
this work into the future, we will concede those important decisions to market forces and
technological momentum rather than make a conscious choice.

Moving forward requires adapting our understanding of human intelligence in science—
recognizing that humans and Al systems bring complementary capabilities to the research
process. The future of science exists in human-Al teams where machine pattern recognition
meets human intuition, where automated exploration meets ethical agency, where the alien
intelligence of Al opens our mind to what human intelligence alone cannot.

Any transformation involves risks and valid anxiety. For example, critics rightfully draw
attention to Al's propensity to hallucinate, the environmental impact of 'harmful' computing, and
the risk of deskilling human researchers (who can conveniently move (and relinquish
responsibility for) decision-making into machinery). These are significant concerns, but they
have to be balanced against the frameworks that are attempting to maximize Al's positive
potential while still acknowledging human decision-making and judgement.

In this co-intelligent future, human judgment remains essential for determining not just
what can be discovered, but what should be discovered and why.
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